Skip to main content
Log in

Effect of cattle activities on gap colonization in mountain pastures

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Cattle influences gap dynamics in pastures in two ways: (1) by creating gaps and (2) by affecting the colonization process. This effect of cattle activity on gap revegetation can be subdivided in three main factors: herbage removal, trampling and dung and urine deposition. The objective of this study was to assess how these three effects moderate the plant succession following gap creation.

In an exclosure, four controlled treatments simulating cattle activity (repeated mowing, trampling, manuring and untreated control) were applied on plots of 2 × 2 m. In the centre of each plot, one artificial gap of 60 × 60 cm was created. During three years, vegetation changes were monitored in spring and in autumn, with a square grid of 100 cells of 0.01 m2 centred on the gap.

Our experiment confirmed that fine-scale gap creation may have a high impact on relative abundances of species in the community. The gap environment acts on species as a filter and this filtering was described in terms of regenerative attributes. Colonizers were species with small seeds, unspecialized seed dispersal, persistent seed bank and high vegetation spread. However, the role of dung deposition, herbage removal or trampling by cattle did not seem to be of primary importance in the revegetation process, but could moderate vegetation response. Therefore, the different cattle effects act as secondary filters that selectively favoured or disadvantaged different species from the gap-regenerating community. These complex interactions are probably keys to understand plant coexistence in perennial grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmagid A.H., Trlica M.J. &Hart R.H. (1987): Soil and vegetation responses to simulated trampling.J. Range Managem. 40: 303–306.

    Article  Google Scholar 

  • Anderson M.J. (2001): Permutation tests for univariate or multivariate analysis of variance and regression.Canad. J. Fish. Aquat. Sci. 58: 626–639.

    Article  Google Scholar 

  • Arnthorsdottir S. (1994): Colonization of experimental patches in mown grassland.Oikos 70: 73–79.

    Article  Google Scholar 

  • Bakker E.S. &Olff H. (2003): Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands.J. Veg. Sci. 14: 465–474.

    Article  Google Scholar 

  • Bonis A., Grubb P.J. &Coomes D.A. (1997): Requirements of gap-demanding species in chalk grassland: reduction of root competition versus nutrient-enrichment by animals.J. Ecol. 85: 625–633.

    Article  Google Scholar 

  • Brokaw N. &Busing R.T. (2000): Niche versus chance and tree diversity in forest gaps.Trends Ecol. Evol. 15: 183–188.

    Article  PubMed  Google Scholar 

  • Bullock J.M., Hill C.B., Silvertown J. &Sutton M. (1995): Gaps colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species.Oikos 72: 273–282.

    Article  Google Scholar 

  • Burke M.J.W. &Grime J.P. (1996): An experimental study of plant community invasibility.Ecology 77: 776–790.

    Article  Google Scholar 

  • Deckers J.A., Nachtergaele F.O. &Spaargaren O.C. (eds.) (1998):World reference base for soil resources: Introduction. Publishing Company Acco, Leuven.

    Google Scholar 

  • Frampton G.K., Van Den Brink P.J. &Gould P.J.L. (2000): Effects of spring precipitation on a temperate arable collembolan community analysed using Principal Responses Curves.Appl. Soil Ecol. 14: 231–248.

    Article  Google Scholar 

  • Gigon A. &Leutert A. (1996): The Dynamic keyhole-key model of coexistence to explain diversity of plants in limestone and other grasslands.J. Veg. Sci. 7: 29–40.

    Article  Google Scholar 

  • Goldberg D.E. (1987): Seedling colonization of experimental gaps in two old-field communities.Bull. Torrey Bot. Club 114: 139–148.

    Article  Google Scholar 

  • Grime J.P. (2001):Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Grime J.P., Hodgson J.G. &Hunt R. (1988):Comparative plant ecology. Unwinn Hyman, London.

    Google Scholar 

  • Herben T., Krahulec F., Hadincová V. &Kovářová M. (1993): Small-scale spatial dynamics of plant-species in a grassland community over six years.J. Veg. Sci. 4: 171–178.

    Article  Google Scholar 

  • Hobbs R.J. &Hobbs V.J. (1987): Gophers and grassland: a model of vegetation response to patchy soil disturbance.Vegetatio 69: 141–146.

    Article  Google Scholar 

  • Hubbell S.P., Foster R.B., O’brien S.T., Harms K.E., Condit R., Wechsler B. &Lao S.L. (1999): Light-cap disturbances, recruitment limitation, and tree diversity in a neotropical forest.Science 283: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Julve Ph. (1998):Baseflor. Index botanique, écologique et chorologique de la flore de France. Version: 8 septembre 2003. URL: http://perso.wanadoo.fr/philippe.julve/catminat.htm.

  • Kalamees R. &Zobel M. (2002): The role of seed bank in gap regeneration in a calcareous grassland community.Ecology 83: 1017–1025.

    Article  Google Scholar 

  • Klimeš L. (1995): Small-scale distribution of species richness in grassland (Bílé Karpaty Mts., Czech Republic).Folia Geobot. Phytotax. 30: 499–510.

    Article  Google Scholar 

  • Klimeš L. (1999): Small-scale plant mobility in a species-rich grassland.J. Veg. Sci. 10: 209–218.

    Article  Google Scholar 

  • Klimeš L., Klimešová J., Hendriks R. &van Groenendael J. (1997): Clonal plant architecture: a comparative analysis form and function. In: DE Kroon H. & Van Groenendael J. (eds.),The ecology and evolution of clonal plants, Backhuys, Leiden, pp. 1–29.

    Google Scholar 

  • Klotz F., Kühn I. &Durra W. (2002):BIOLFLOR — Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn.

    Google Scholar 

  • Kohler F., Gillet F., Gobat J.-M. &Buttler A. (2004a): Seasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing.J. Veg. Sci. 15: 143–150.

    Article  Google Scholar 

  • Kohler F., Gillet F., Progin M.-A., Gobat J.-M. &Buttler A. (2004b): Seasonal dynamics of plant species at fine scale in wooded pastures.Community Ecol. 5: 7–17.

    Article  Google Scholar 

  • Kotanen P.M. (1997): Effects of gap area and shape on recolonization by grassland plants with differing reproductive strategies.Canad. J. Bot. 75: 352–361.

    Google Scholar 

  • Lavorel S., Rochette C. &Lebreton J.-D. (1999): Functional groups for response to disturbance in Mediterranean old fields.Oikos 84: 480–498.

    Article  Google Scholar 

  • Lavorel S., Lepart J., Debussche M., Lebreton J.-D. &Beffy J.-L. (1994): Small-scale disturbances and the maintenance of species diversity in Mediterranean old fields.Oikos 70: 455–473.

    Article  Google Scholar 

  • Lavorel S., Touzard B., Lebreton J.-D. &Clément B. (1998): Identifying functional groups for response to disturbance in an abandoned pasture.Acta Oecol. 19: 227–240.

    Article  Google Scholar 

  • Legendre P. &Gallagher E.D. (2001): Ecologically meaningful transformations for ordination of species data.Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre P. &Legendre L. (1998):Numerical ecology. 2nd English ed. Elsevier, Amsterdam.

    Google Scholar 

  • Macek P. &Lepš J. (2003): The effect of environmental heterogeneity on clonal behaviourof Prunella vulgaris L.Pl. Ecol. 168: 31–43.

    Article  Google Scholar 

  • Malo J.E., Jimenez B. &Suarez F. (1995): Seed bank build-up in small disturbances in a Mediterranean pasture: the contribution of endozoochorous dispersal by rabbits.Ecography 18: 73–82.

    Article  Google Scholar 

  • Mariott C.A., Fisher J.M., Hood K.J. &Smith M.A. (1997): Persistence and colonization of gaps in sown swards of grass and clover under different sward management.Grass Forage Sci. 52: 156–166.

    Article  Google Scholar 

  • Martinsen G.D., Cushman J.H. &Whitham T.G. (1990): Impact of pocket gopher disturbance on plant-species diversity in a shortgrass prairie community.Oecologia 83: 132–138.

    Article  Google Scholar 

  • Milberg P. (1993): Seed bank and seedling emerging after soil disturbance in a wet semi-natural grassland in Sweden.Ann. Bot. Fenn. 30: 9–13.

    Google Scholar 

  • Otsus M. &Zobel M. (2002): Small-scale turnover in a calcareous grassland, its pattern and components.J. Veg. Sci. 13: 199–206.

    Article  Google Scholar 

  • Pakeman R.J., Attwood J.P. &Engelen J. (1998): Sources of plants colonizing experimentally disturbed patches in an acidic grassland, in eastern England.J. Ecol. 86: 1032–1041.

    Article  Google Scholar 

  • Pakeman R.J. &Small J.L. (2005): The role of the seedbank, seed rain and the timing of disturbance in gap regeneration.J. Veg Sci. 16: 121–130.

    Article  Google Scholar 

  • Pickett S.T.A., Kolasa J., Armesto J.J. &Collins S.L. (1989): The ecological concept of disturbance and its expression at various hierarchical levels.Oikos 54: 129–136.

    Article  Google Scholar 

  • R Development Core Team (2005):R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org.

    Google Scholar 

  • Rapp J.K. &Rabinowitz D. (1985): Colonization and establishment of Missouri prairie plants on artificial soil disturbances. I. Dynamics of forb and graminoid seedlings and shoots.Amer. J. Bot. 72: 1618–1628.

    Article  Google Scholar 

  • Rogers W.E. &Hartnett D.C. (2001): Temporal vegetation dynamics and recolonization mechanisms on different-sized soil disturbances in tallgrass prairie.Amer. J. Bot. 88: 773–777.

    Article  Google Scholar 

  • Ryser J.-P., Walther U. &Flisch R. (2001): Données de base pour la fumure des grandes cultures et des herbages.Rev. Suisse Agric. 33: 1–80.

    Google Scholar 

  • Silvertown J. &Smith B.A. (1988): Mapping the microenvironment for seed germination in the field.Ann. Bot. (London) 63: 163–167.

    Google Scholar 

  • Špačková I. &Lepš J. (2004): Variability of seedling recruitment under dominant, moss and litter removal over four years.Folia Geobot. 29: 41–55.

    Google Scholar 

  • Suding K.N. (2001): The effects of gap creation on competitive interactions: separating changes in overall intensity from relative rankings.Oikos 94: 219–227.

    Article  Google Scholar 

  • Suding K.N. &Goldberg E.D. (2001): Do disturbance alter competitive hierarchies? Mechanisms of change following gap creation.Ecology 82: 2133–2149.

    Article  Google Scholar 

  • Suding K.N., Goldberg E.D. &Hartman K.M. (2003): Relationships among species traits: separating levels of response and identifying linkages to abundance.Ecology 84: 1–16.

    Article  Google Scholar 

  • Tamm A., Kull K. &Sammul M. (2002): Classifying clonal growth forms based on vegetative mobility and ramet longevity: whole community analysis.Evol. Ecol. 15: 383–401.

    Article  Google Scholar 

  • Ter Braak C.J.F. &Šmilauer P. (2002):CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.

    Google Scholar 

  • Thompson K., Bakker J.P. &Bekker R. (1997):The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tilman D. (1994): Competition and biodiversity in spatially structured habitats.Ecology 75: 2–16.

    Article  Google Scholar 

  • Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Walters S.M. &Webb D.A. (1964–1980):Flora europaea 1–5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Van Den Brink P.J. &Ter Braak C.J.F. (1999): Principal response curves: analysis of time-dependent multivariate responses of biological community to stress.Environm. Toxicol. Chem. 18: 138–148.

    Article  Google Scholar 

  • Van Der Maarel E. &Sykes M.T. (1993): Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept.J. Veg. Sci. 4: 179–188.

    Article  Google Scholar 

  • Vandvik V. (2004): Gap dynamics in perennial subalpine grassland: trends and processes change during secondary succession.J. Ecol. 92: 86–96.

    Article  Google Scholar 

  • Williams R.J. (1992): Gap dynamics in subalpine heathland and grassland vegetation in south-eastern Australia.J. Ecol. 80: 343–352.

    Article  Google Scholar 

  • Wright S.J., Muller-Landau H.C., Condit R. &Hubbell S.P. (2003): Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees.Ecology 84: 3174–3185.

    Article  Google Scholar 

  • Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, F., Gillet, F., Gobat, JM. et al. Effect of cattle activities on gap colonization in mountain pastures. Folia Geobot 41, 289–304 (2006). https://doi.org/10.1007/BF02904943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904943

Keywords

Navigation