Skip to main content
Log in

Non-overlapping domain decomposition methods in structural mechanics

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The modern design of industrial structures leads to very complex simulations characterized by nonlinearities, high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently solve to linear system based on non-overlapping domain decomposition methods. We present a review of most employed approaches and their strong connection. We outline their mechanical interpretations as well as the practical issues when willing to implement and use them. Numerical properties are illustrated by various assessments from academic to industrial problems. An hybrid approach, mainly designed for multifield problems, is also introduced as it provides a general framework of such approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yves Achdou and Yuri A. Kuznetsov (1995). Substructuring preconditioners for finite element methods on nonmatching grids.East-West J. Numer. Math.,3(1), 1–28.

    MathSciNet  MATH  Google Scholar 

  2. Yves Achdou, Yvon Maday and Olof B. Widlund (1996). Méthode itérative de sousstructuration pour les éléments avec joints.C.R. Acad. Sci. Paris,I(322), 185–190.

    MathSciNet  Google Scholar 

  3. Mickael Barboteu, Pierre Alart and Marina Vidrascu (2001). A domain decomposition strategy for nonclassical frictional multicontact problems.Comp. Meth. App. Mech. Eng.,190, 4785–4803.

    Article  MATH  Google Scholar 

  4. Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine and Henk Van der Vorst (1994).Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM.

  5. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl (1996). Meshless methods: An overview and recent developments.Computer Methods in Applied Mechanics and Engineering,139, 3–47.

    Article  MATH  Google Scholar 

  6. C. Bernardi, Y. Maday and T. Patera (1989). A new non conforming approach to domain decomposition: the Mortar Element Method. In: H. Brezis and J.L. Lious, editors,Nonlinear Partial Differential Equations and their Applications. Pitman, London.

    Google Scholar 

  7. M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson and D. Rixen (2000). Application of the FETI method to ASCI problems: Scalability results on a thousand-processor and discussion of highly heterogeneous problems.Int. J. Num. Meth. Eng.,47(1–3), 513–536.

    Article  MATH  Google Scholar 

  8. J. E. Bolander and N. Sukumar (2005). Irregular lattice model for quasistatic crack propagation.Phys. Rev. B, 71.

  9. Piotr Breikopt and Antonio Huerta (Eds.) (2002).Meshfree and particle based approaches in computational Mechanics, Volume 11 ofREEF special release. Hermes.

  10. Suzanne Brenner (2005). Lower bounds in domain decomposition. InProceedings of the 16th international conference on domain decomposition methods.

  11. F. Brezzi and L.D. Marini (1993). A three-field domain decomposition method. InProceedings of the Sixth International Conference on Domain Decomposition Methods, pp. 27–34.

  12. M. Cross, C. Walshaw and M.C. Everett (1995). A parallelisable algorithm for optimising unstructured mesh partitions. Technical Report, School of Mathematics, Statistics & Scientific Computing, University of Greenwich, London.

    Google Scholar 

  13. X-C Cai and David Keyes. Nonlinearly preconditioned inexact newton algorithms.SIAM J. Sci. Comp., 2002.

  14. A. Chapman and Y. Saad (1997). Deflated and augmented Krylov subspace techniques.Numer. Linear Algebra Appl..

  15. P.G. Ciarlet (1979).The finite element method for elliptic problems. North Holland.

  16. J. Salençon (1988).Mécanique des milieux continus. Ecole polytechnique. Ellipses, 1988.

  17. R. Craig and M. Bampton. Coupling of substructures for dynamic analysis.AIAA Journal,6, 1313–1319.

  18. Philippe Cresta, Olivier Allix, Christian Rey and Stéphane Guinard (2005). Comparison of multiscale and parallel nonlinear strategies based on domain decomposition for post buckling analysis.Comp. Meth. App. Mech. Eng.,196(8), 1436–1446.

    Article  MathSciNet  Google Scholar 

  19. Jean-Michel Cros (2002). A preconditioner for the schur complement domain decomposition method. In Herrera, Keyes and Widlund (Eds.),Proceedings of the 14 th International Conference on Domain Decomposition Methods, pp. 373–380.

  20. G.A. D'Addetta, E. Ramm, S. Diebels and W. Ehlers (2004). A particle center based homogenization strategy for granular assemblies.Int. J. for Computer-Aided Engineering,21(2–4), 360–383.

    Article  MATH  Google Scholar 

  21. A. de La Bourdonnaye, C. Farhat, A. Macedo, F. Magoules and F-X. Roux (1998).Adrances in Computational Mechanics with High Performance Computing. Chapter A method of finite element tearing and interconnecting for the Helmholtz problem, pp. 41–54. Civil-Comp Press, Edinburgh, United Kingdom.

    Google Scholar 

  22. Arnaud Delaplace (2005). Fine description of fracture by using discrete particle model. InProceedings of ICF 11-11th International Conference on Fracture.

  23. Clarck Dohrmann (2003). A preconditioner for substructuring based on constrained energy minimization.SIAM J. Sci. Comp.,25(1), 246–258.

    Article  MathSciNet  MATH  Google Scholar 

  24. Victorita Dolean, F. Nataf and Gerd Rapin (2005). New constructions of domain decomposition methods for systems of PDEs.C. R. Acad. Sci. Paris,340(1), 693–696.

    MathSciNet  MATH  Google Scholar 

  25. Z. Dostal (1988). Conjugate gradient method with preconditioning by projector.Int. J. Comput. Math.,23, 315–323.

    Article  MATH  Google Scholar 

  26. Zdenek Dostal, David Horak and Dan Stefanica (2005). An overview of scalable feti-dp algorithms for variational inequalities. InProceedings of the 16th Conference on Domain Decomposition Methods.

  27. D. Dureisseix and C. Farhat (2001). A numerically scalable domain decomposition method for the solution of frictionless contact problems.Internat. J. Num. Meth. Engng.,50(12), 2643–2666.

    Article  MATH  Google Scholar 

  28. Georges Duvant (1990).Mécanique des milieux continus. Masson.

  29. J. Erhel, K. Burrage and B. Pohl (1996). Restarted GMRes preconditioned by deflation.J. Comput. Appl. Math.,69, 303–318.

    Article  MathSciNet  MATH  Google Scholar 

  30. Justine Erhel and F. Guyomarc'h (2000). An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems.SIAM J. Matrix Anal. Appl.,21(4), 1279–1299.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Farhat (1992). A saddle-point principle domain decomposition method for the solution of solid mechanics problems. In D. Keyes, T.F. Chan, G.A. Meurant, J.S. Scroggs, and R.G. Voigt, editors,Domain Decomposition Methods for Partial Differential Equations, pp. 271–292.

  32. C. Farhat, P.-S. Chen and F.-X. Roux (1998). The two-level FETI method-Part II: Extension to shell problems, parallel implementation and performance results.J. Comput. Meth. Appl. Mech. Eng.,155, 153–180.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Farhat and M. Géradin (1996). On the computation of the null space and generalized invers of large matrix, and the zero energy modes of a structure. Technical Report CU-CAS-96-15, Center for aerospace structures, May.

  34. C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson and D. Rixen (2001). FETI-DP: a dual-primal unified FETI method-part i: a faster alternative to the two-level FETI method.Int. J. Num. Meth. Eng.,50, (7), 1523–1544.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Farhat, M. Lesoinne and K. Pierson (2000). A scalable dual-primal domain decomposition method.Numer. Linear Algebra Appl.,7 (7–8), 687–714.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Farhat, A. Macedo and M. Lesoinne (2000). A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems.Numerische Mathematik,85, 283–308.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Farhat, A. Macedo and R. Tezaur (1999). FETI-H: a scalable domaine decomposition method for high frequency exterior Helmholtz problems. InDomain decomposition methods in science and engineering. Domain decomposition press.

  38. C. Farhat and J. Mandel (1998). The two-level FETI method for static and dynamic plate problems-part I: An optimal iterative solver for biharmonic systems.J. Comput. Meth. Appl. Mech. Eng.,155, 129–152.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Farhat, J. Mandel and F.X. Roux (1994). Optimal convergence properties of the FETI domain decomposition method.Comput. Meth. Appl. Mech. Eng.,115, 365–385.

    Article  MathSciNet  Google Scholar 

  40. C. Farhat, K. Pierson and M. Lesoinne (2000). The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems.J. Comput. Meth. Appl. Mech. Eng.,184(2–4), 333–374

    Article  MATH  Google Scholar 

  41. C. Farhat and F.-X. Roux (1991). A method of finite tearing and interconnecting and its parallel solution algorithm.Int. J. Num. Meth. Eng.,32, 1205–1227.

    Article  MATH  Google Scholar 

  42. C. Farhat and F.-X. Roux (1994). The dual Schur complement method with well-posed local Neumann problems.Contemporary Mathematics,157, 193–201.

    MathSciNet  Google Scholar 

  43. C. Farhat and F. X. Roux (1994). Implicit parallel processing in structural mechanics.Computational Mechanics Advances,2(1), 1–124. North-Holland.

    Google Scholar 

  44. C. Farhat and H. D. Simon (1993). Top/domdec—a software tool for mesh partitioning and parallel processing. Technical Report, NASA Ames.

  45. Frédéric Feyel (1998).Application du calcul parallèle aux modèles à grand nombre de variables internes. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris.

  46. Frédéric Feyel (2005).Quelques multi-problèmes en mécanique des matériaux et structures. Habilitation à diriger des recherches, Université Pierre et Marie Curie.

  47. Michel Fortin and Roland Glowinski (1982).Méthodes de lagrangien augmenté—applications à la résolution numérique de problèmes aux limites. Dunod.

  48. Yannis Fragakis and Manolis Papadrakakis (2002). A unified framework for formulating domain decomposition methods in structural mechanics. Technical report, Institute of Structural Analysis and Seismic Research, National Technical University of Athens.

  49. Yannis Fragakis and Manolis Papadrakakis (2003). The mosaic of high-performance domain decomposition methods for structural mechanics—part i: Formulation, interrelation and numerical efficiency of primal and dual methods.Comput. Meth. Appl. Mec. Eng.,192(35–36), 3799–3830.

    Article  MATH  Google Scholar 

  50. Yannis Fragakis and Manolis Papadrakakis (2004). The mosaic of high-performance domain decomposition methods for structural mechanics—part ii: Formulation enhancements, multiple right-hand sides and implicit dynamics.Comput. Meth. Appl. Mec. Eng.,193(42–44), 4611–4662.

    Article  MATH  Google Scholar 

  51. V. Frayssé, L. Girand and H. Kharraz-Aroussi (1998). On the influence of the orthogonalization scheme on the parallel performance of GMRes. Technical Report, CERFACS.

  52. Norbert Germain, Jacques Besson and Frédéric Feyel (2005). Méthodes de calcul non local: Application aux structures composites. InActes du 7ème colloque national en calcul des structures, Giens.

  53. P. Germain (1986).Mécanique. Ecole polytechnique. Ellipses.

  54. R. Glowinski and P. Le Tallec (1990). Augmented lagrangian interpretation of the nonoverlapping Schwartz alternating method. InThird International Symposium on Domain Decomposition Methods for Partial Differential Equations pp. 224–231.

  55. P. Goldfeld (2002). Balancing Neumann-Neumann for (in)compressible linear elasticity and (generalized) Stokes—parallel implementation. InProceedings of the 14 th International Conference on Domain Decomposition Method, pp. 209–216.

  56. P. Gosselet, V. Chiaruttini, C. Rey and F. Feyel (2003). Une approche hybride de décomposition de domaine pour les problèmes multiphysiques: application à la poroélasticité. InActes du Sixième Colloque National en Calcul de Structures, Volume 2, pp. 297–304.

  57. P. Gosselet, Vincent Chiaruttini, C. Rey and F. Feyel (2004). A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems application to poroelasticity.Revue Européenne des Élements Finis,13, 523–534.

    Article  MATH  Google Scholar 

  58. P. Gosselet and C. Rey (2002). On a selective reuse of krylov subspaces in newton-krylov approaches for nonlinear elasticity. InProceedings of the 14 th Conference on Domain Decomposition Methods, pp. 419–426.

  59. P. Gosselet, C. Rey, P. Dasset and F. Léné (2002). A domain decomposition method for quasi incompressible formulations with discontinuous pressure field.Revue Européenne des Élements Finis,11, 363–377.

    Article  MATH  Google Scholar 

  60. P. Gosselet, C. Rey and D. Rixen (2003). On the initial estimate of interface forces in FETI methods.Comput. Meth. Appl. Mech. Engrg.,192, 2749–2764.

    Article  MATH  Google Scholar 

  61. Pierre Gosselet (2003).Méthodes de décomposition de domaine et méthodes d'accélération pour les problèmes multichamp en mécanique non-linéaire. PhD thesis, Université P. et M. Curie.

  62. George Karypis and Vipin Kumar (1998). Multilevel algorithms for multi-constraint graph partitioning. Technical report, University of Minnesota, Department of Computer Science.

  63. A. Klawonn, O. Rheinbach and O.B. Widlund (2005). Some computational results for dualprimal feti methods for three dimensional elliptic problems.Lect. Notes Comput. Sci. Eng.,40, 361–368.

    Article  MathSciNet  Google Scholar 

  64. A. Klawonn and O.B. Widlund (1999). Dual and dual-primal FETI methods for elliptic problems with discontinuous coefficients. InProceedings of the 12th International Conference on Domain Decomposition Methods, Chiba, Japan, October. Submitted.

  65. A. Klawonn and O.B. Widlund (2001). FETI and Neumann-Neumann iterative substructuring methods: connections and new results.Comm. pure and appl. math., LIV, 0057–0090.

    Article  MathSciNet  Google Scholar 

  66. P. Ladevèze (1999).Nonlinear Computational Structural Mechanics—New Approaches and Non-Incremental Methods of Calculation. Springer Verlag.

  67. P. Ladevèze, O. Loiseau and D. Dureisseix (2001). A micro-macro and parallel computational strategy for highly heterogeneous structures.Int. J. Num. Meth. Engng.,52, 121–138.

    Article  Google Scholar 

  68. P. Ladevèze, D. Néron and P. Gosselet, P. (2006). On a mixed and multiscale domain decomposition method.Comput. Meth. in Appl. Mech. Engng.,196 (8), 1526–1540.

    Article  Google Scholar 

  69. Michel Lesoinne and Kendall Pierson (1999). FETI-DP: An efficient, scalable, and unified Dual-Primal FETI method. InDomain Decomposition Methods in Sciences and Engineering, pp. 421–428.

  70. Jing Li (2002). A dual-primal feti method for solving stokes/navier-stokes equations. InProceedings of the 14 th International Conference on Domain Decomposition Method, pp. 225–233.

  71. F.J. Lingen (2000). Efficient Gram-Semidt orthonormalisation on parallel computers.Com. Numer. Meth. Engng.,16, 57–66.

    Article  MATH  Google Scholar 

  72. JL. Lious, Y. Maday and G. Turinici (2001). Résolution d'edp par un schéma en temps pararéel.C. R. Acad. Sci. Paris,333 (1), 1–6.

    MathSciNet  Google Scholar 

  73. Gui-Rong Liu and Yuan-Tong Gu (2005).An Introduction to Meshfree Methods and Their Programming. Springer.

  74. J. Mandel (1993). Balancing domain decomposition.Comm. Appl. Num. Meth. Engng.,9, 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Mandel and M. Brezina (1996). Balancing domain decomposition for problems with large jumps in coefficients.Math. Comp.,65(216), 1387–1401.

    Article  MathSciNet  MATH  Google Scholar 

  76. J. Mandel and R. Tezaur (1996). Convergence of a substructuring method with Lagrange multipliers.Numerische Mathematik,73, 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Mandel and R. Tezaur (2000). On the convergence of a dual-primal substructuring method. UCD/CCM Report 150, Center for Computational Mathematics, University of Colorado at Denver, April. To appear in Numer. Math.

  78. Northwest Numerics (2001).Z-set developper manual.

  79. Northwest Numeries (2001).Z-set user manual.

  80. A. Nouy (2003).Une stratégie de calcul multiéchelle avec homogénéisation en temps et en espace pour le calcul de structures fortement hétérogènes. PhD thesis, ENS de Cachan.

  81. K.C. Park, M.R. Justino, and C.A. Felippa (1997). An algebraically partitioned FETI method for parallel structural analysis: algorithm description.Int. J. Num. Meth. Eng.,40(15), 2717–2737.

    Article  MATH  Google Scholar 

  82. K.C. Park, M.R. Justino, and C.A. Felippa (1997) An algebraically partitioned FETI method for parallel structural analysis: performance evaluation.Int. J. Num. Meth. Eng.,40(15), 2739–2758.

    Article  MATH  Google Scholar 

  83. Rodrigo Paz and Mario Storti (2005). An interface strip preconditioner for domain decomposition methods: application to hydrologyInt. J. Numer. Meth. Engng.,62, 1873–1894.

    Article  MathSciNet  MATH  Google Scholar 

  84. C. Rey and P. Gosselet (2003). Solution to large nonlinear systems: acceleration strategies based on domain decomposition and reuse of krylov subspaces. InProceedings of the 6t h ESAFORM conference on material forming.

  85. C. Rey and F. Léné (1998). Reuse of krylov spaces in the solution of large-scale non linear elasticity problems. InDomain Decomposition Methods in Sciences and Engineering, pp. 465–471.

  86. C. Rey and F. Risler (1998). A Rayleigh-Ritz preconditioner for the iterative solution to large scale nonlinear problems.Numerical Algorithms,17, 279–311.

    Article  MathSciNet  MATH  Google Scholar 

  87. Franck Risler and Christian Rey (2000). Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems.Numerical Algorithms,23, 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  88. Frank Risler and Christian Rey (1998). On the reuse of Ritz vectors for the solution to nonlinear elasticity problems by domain decomposition methods. InDD10 Proceedings, Contemporary Mathematics, Volume 218, pp. 334–340.

  89. D. Rixen (1997).Substructuring and dual methods in structural analysis. PhD thesis University of Liège, Belgique.

    Google Scholar 

  90. D. Rixen (2004). A dual craig-bampton method for dynamic substructuring.J. Comput. Appl. Math. 168, 383–391.

    Article  MathSciNet  MATH  Google Scholar 

  91. D. Rixen and C. Farhat (1999). A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems.Int. J. Num. Meth. Eng.,44(4), 489–516.

    Article  MathSciNet  MATH  Google Scholar 

  92. D. Rixen, C. Farhat, R. Tezaur and J. Mandel (1999). Theoretical comparison of the FETI and algebraically partitioned FETI methods, and performance comparisons with a direct sparse solver.Int. J. Num. Meth. Eng.,46(4), 501–534.

    Article  MATH  Google Scholar 

  93. Daniel Rixen (2002). Extended preconditioners for the feti method applied to constrained problems.Int. Journal for Numerical Methods in Engineering,54(1), 1–26.

    Article  MATH  Google Scholar 

  94. F.-X. Roux (1997), Parallel implementation of direct solution strategies for the coarse grig solvers in 2-level FETI method. Technical report, ONERA, Paris, France.

    Google Scholar 

  95. Y. Saad (1997). Analysis of augmented Krylov subspace methods.SIAM J. Matrix Anal. Appl.,18(2), 435–449.

    Article  MathSciNet  MATH  Google Scholar 

  96. Y. Saad (2000).Iterative methods for sparse linear systems. PWS Publishing Company, 3rd edition.

  97. Y. Saad and M.H. Schultz (1986). GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Comput.,7, 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  98. Youssef Saad (1987). On the Lanczos method for solving symmetric linear systems with several right hand sides.Math. Comp.,48, 651–662.

    Article  MathSciNet  MATH  Google Scholar 

  99. L. Series, F. Feyel and F.-X. Roux (2003). Une méthode de décomposition de domaine avec deux multiplicateurs de Lagrange. InActes du 16eme Congrès Français de Mécanique.

  100. L. Series, F. Feyel and F.-X. Roux (2003). Une méthode de décomposition de domaine avec deux multiplicateurs de Lagrange, application au calcul des structures, cas du contact. InActes du Sixième Colloque National en Calcul des Structures, Volume III, pp. 373–380.

  101. D. Stefanica and A. Klawonn (1999). The FETI method for mortar finite elements. InProceedings of 11th International Conference on Domain Decomposition Methods, pp. 121–129.

  102. P. Le Tallec (1994). Domain-decomposition methods in computational mechanics.Computational Mechanics Advances,1(2), 121–220. North-Holland.

    Google Scholar 

  103. P. Le Tallec, J. Mandel and M. Vidrascu (1998). A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems.SIAM. J. Num. Ana.,35(2), 836–867, April.

    Article  MATH  Google Scholar 

  104. P. Le Tallec, Y.-H. De Roeck and M. Vidrascu (1991). Domain-decomposition methods for large linearly elliptic three dimensional problems.J. Comp. Appl. Math.,34, 93–117. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  105. P. Le Tallec and M. Vidrascu (1993). Méthodes de décomposition de domaines en calcul de structures. InActes du Premier Colloque National en Calcul des Structures, Volume, I, pp. 33–49.

  106. P. Le Tallec and M. Vidrascu (1996). Generalized Neumann-Neumann preconditioners for iterative substructuring. InProceedings of the Ninth Conference on Domain Decomposition, June Bergen. to appear.

  107. A. van der Sluis and H. can der Vorst (1986). The rate of convergence of conjugate gradients. Numer. Math.,48, 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  108. Pieter Wesseling (2004).An Introduction to Multigrid Methods. R.T. Edwards, Inc.

  109. O.C. Zienkiewicz and R.L. Taylor (1989).The finite element method. Mc Graw-Hill Book Compagny.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gosselet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosselet, P., Rey, C. Non-overlapping domain decomposition methods in structural mechanics. Arch Computat Methods Eng 13, 515 (2006). https://doi.org/10.1007/BF02905857

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02905857

Keywords

Navigation