Skip to main content
Log in

Computational methods for tension-loaded structures

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

This paper deals with tension loaded structures made of coated woven fabric, cables and rigid frames such as mats and hoops. It describes in details a general framework for modelling and numerical simulation of their mechanical behavior. Several methods, developped in these last decades, are presented and compared. The principal particularity of these structures is that they derive their stiffness and their stability from the surface geometry and tensile stress field coupling. This particularity is combined with nonlinearities which can be due to possible large deflections, material law behavior and local instabilities due to wrinkling effects. In addition, a great number of design parameters must be taken into account in order to optimize the mechanical behavior of the structure. Therefore, the design and the analysis of such structure are complex and involve extensive computational costs. The principal steps of the analysis process are: form-finding, structural response of the structure to loads, cutting pattern and optimization. In this work, after a short description of the methods developed in this field as well as a critical comparison, new approaches are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, J.F. (1986). Computer-Aided design of spatial structures. Invited lecture at theIASS Symposium on Membrane Structures and Space Frames, Osaka.

  2. ALGOR/CADSAP, CADLM. Système de Conception, de Calculs, de Gestion de Publication Technique et Systèmes Experts. La Croix du Sud 7 rue Raoul Dautry 91190 Gif/Yvette, France.

  3. Argyris, J.H. (1972). Large deflection analysis of prestressed networks.Journal of Structural Division, 633–653.

  4. Argyris, J.H., Angelopoulos, T. and Bichat, B. (1974). A general method for shape finding of lightweight tension structures.Computer Methods in Applied Mechanics and Engineering,3, 135–149.

    Article  Google Scholar 

  5. Barnes, M.R. (1975). Applications of dynamic relaxation to the design and analysis of cable, membrane and pneumatic structures, 2nd Int. Conf. on Space Structures, Guildford.

  6. Barnes, M.R. (1988). Form finding and analysis of prestressed nets and membranes.Computers and Structures,30, (3), 685–695.

    Article  Google Scholar 

  7. Bathe, K.J. (1982).Finite element procedures in engineering analysis. Prentice Hall.

  8. Bendaas, M.C. (1992). Analyse et conception des structures textiles tendues.Thèse de Doctorat, Institut National Polythecnique de Grenoble, France.

    Google Scholar 

  9. Burner, E. and Koenen, R. (1991), Biaxial behaviour of precontraint membrane material.Workshop Ferrari, Précontraint et textiles architecture, France.

  10. Contri, P. and Schrefler, A. (1988). A geometrically nonlinear finite element analysis of wrinkled membranes surfaces by a no-compression material model.Communication in Applied Numerical Methods,4, 5–15.

    Article  MathSciNet  Google Scholar 

  11. Cowper, G.R. (1966). The Shear Coefficient in Timoshenko Beam Theory.Journal of Applied Mechanics, 335–340.

  12. Crisfield, M.A. (1997).Nonlinear finite element analysis of solids and structures, Volumes 1 and 2, Wiley.

  13. Descaillot, F. (1993). Caractérisation des paramètres rhéologiques par essais biaxiaux de composites tissés, Rapport de DEA, LMGC, Montpellier, France.

    Google Scholar 

  14. Dierkes, U., Hildebrandt, S., Küster, A. and Wohlrab, O. (1992).Minimal surfaces, 2 Vols., Springer Verlag.

  15. Dong, G.J. and Byung, M.K. (1992). Complementary problem formulation for the wrinkled membrane and numerical implementation.Finite Element in Analysis and Design,12, 91–104.

    Article  MATH  Google Scholar 

  16. Douglas, J. (1992). Solution of the problem of Plateau.Trans. American Math. Soc.,33, 263–321.

    Article  Google Scholar 

  17. D'Uston de Villeregran, B. (1987). Conception et analyse mécanique de structures textiles tendnes.Thèse de Doctorat, INSA Lyon, France.

    Google Scholar 

  18. Ferrari Serge, S.A. (1973). Tissage et Enduction, Document commercial, 38352, La Tour du Pin, France.

    Google Scholar 

  19. Otto Frei (1973).Tensile structures, The MIT Press.

  20. Galasko, Gy., Gaspar ZS., Nouri-Baranger T., Leon J.C., Trompette P. and Veron P. (1996). Comparison of tent structures calculation in Hungary and France.Acta Technica Acad. Eci. Hung.,107 (1–2), 27–39.

    Google Scholar 

  21. Galasko G., J.C., Leon, P. Trompette and P. Veron ({dy1997}). Textiles structures: comparison of several cutting pattern mathods.International Journal of Space Structures,12, (1).

  22. Grosjean C.C. and Rassias T.M. (1992). Joseph Plateau and his works. InThe problem of Plateau, 3–17.

  23. Gründig L. and Monterieff E. (1998). Computational modelling,Third International Workshop on The Design and Pratical Realisation os Architectural Membranes Structures.

  24. Haber R.B., Abel J.F. and Greenberg P. (1982). An integrated design system for cable reinforced membranes using interactive computer graphics.Computers and Structures,14, (3–4), 261–280.

    Google Scholar 

  25. Haber R.B. and Abel J.F. (1982). Initial equilibrium solution methods for cable reinforced membranes. Part I and II.Computers Methods in Applied Mechanical Engineering,30, 263–289 et 285–306.

    Article  MATH  Google Scholar 

  26. Haftka R.T. and Gürdal Z. (1996).Elements of structural optimization. Third edition, Kluwer Academic Publishers.

  27. Haftka R.T. (1985). Sensitivity calculations for iteratively solved problems.International Journal for Numerical Methods in Engineering,21, 1535–1546.

    Article  MathSciNet  MATH  Google Scholar 

  28. Hangleiter U. (1986). Cutting pattern for structural membranes.Proceedings of LSA, 279–286.

  29. Haug, E. (1972). Analytical shape finding for cable nets.IASS Pacific Symposium on Tension Structures and Spaces Frames, Tokyo-Kyoto, 83–92.

  30. Hermeline F. (1982). Triangulation Automatique d'un Polyèdre en Dimension N.R.A.I.R.O. Analyse numérique,16, (3), 211–242.

    MathSciNet  MATH  Google Scholar 

  31. Ishii K. (1976). Analytical shape determination for membrane structure.Proc. IASS world congress on spaces enclosures, Monreal, 137–179.

  32. Ishii K. (1983). Structural design of cable-reinforced membrane structure.IASS International Symposium on Shell an Spatial Structure, Rio de Janeiro.

  33. Kirsh U. (1993).Structural optimization, fundamentals and applications. Springer-Verlag.

  34. Kudoch K. (1986). An analysis of cutting pattern and the fabrication of membrane panels for the membrane structure.Proceeding IASS Symposium, Osaka, T2, 127–132.

  35. Linkwitz K. and Schek H.J. (1971). Einige bemerkungen von vorgespannten seilnetzkonstruktionen.Ingenieur-Archiv,40, 145–158, Springer-Verlag

    Article  Google Scholar 

  36. Linkwitz K. (1976). Combined use of computation techniques and model for the process of form-finding for prestressed nets, grid shelles and membranes.Int. Symp. on Weitgespannte Flächentragwerke,64, 84–97, Stuttgart.

    Google Scholar 

  37. Malinowsky M. (1993). Structures textiles. Techniques de l'Ingénieur, Traité Construction, C2470.

  38. Mansfield E.H. (1970). Load transfer via wrinkled membrane.Proc. Roy. Soc. Mond. A., 316, 269–289.

    Article  Google Scholar 

  39. Mansfield E. H. (1977). Analysis of wrinkled membranes with anisotropic and nonlinear elastic properties.Proc. Roy. Soc. Mond. A.,353, 475–498.

    Article  Google Scholar 

  40. Maurin B. (1998). Morphogénèse des membranes textiles architecturales.Thèse de Doctorat, Université Montpellier II.

  41. Maurin B. and Motro R. (1998). Investigation of minimal forms with density methods.Jour. of the Int. Assoc. for Shell and Structures.

  42. Meffert B. (1978). Mechanical Properties of P.V.C. Coated Fabries.Für Kunststoffverarbeitung (IKV), RWTH Aachen.

    Google Scholar 

  43. J.B.M. Meusnier (1785). Mémoir sur la courbe des surfaces.Mémoires de savant etrangers,10.

  44. Miller R.K. and Hedgepeth J.M. (1982). An algorithm for finite element analysis of partly wrinkled membranes.AIAA 1761–1763.

  45. Miller R.K., Hedgepeth J.M., Weingarten V.I., Prasanta D. and Kahyai Z. (1985). Finite element analysis of partly wrinkled membranes.Computers and Structures,20, (13), 631–639.

    Article  Google Scholar 

  46. Mutin F. (1989). Modélisation de membrane. Application à l'analyse mécanique des voiles de bateau.Thèse de Doctorat, Université de Nice Sophia Antipolis.

  47. Mutin F. (1996). A finite element for wrinkled curved elastic membranes, and its ^pplication to sails.Communications in Numerical Methods in Engineering,12, 775–785.

    Article  MathSciNet  Google Scholar 

  48. Nair P.B. and Keane J.A. (1998). On the approximation of frequency constraints in structural optimization.AIAA/ISSMO First Internet Conference On Fast Reanalysis and Approximation Method.

  49. Nguyen Thanh Quanc (1993). Contribution à l'étude du comportement mécanique des tissus techniques enduits.Thèse INPG.

  50. Nishino F. and Duggal R. (1989). Design analysis of cable networks.Journal of Structural Engineering,115 (12), 3123–3141.

    Article  Google Scholar 

  51. J.C.C. Nitsche (1980).Introduction to minimal surfaces, Cambridge University Press.

  52. Norihiro I., Yoshihiro M. and Masahisa F. (1986). Development of design system for fabric tension structures, shell, membranes ans spaces frames.Proceedings IASS Symposium, Osaka,2.

  53. Nouri-Baranger, T. (2001). Contribution à l'étude du couplage forme-efforts dans les structures textiles tendues et à l'homogénéisation et l'optimisation des structures composites,Habilitation à Diriger des Recherches, Université Claude Bernard Lyon1.

  54. Nouri-Baranger, T. (2002). Form-finding, Analysis and cutting patterns of tension structures,Computational Structures Technology, 379–408. Edited by BHV Topping and Z. Bittnar, Saxe Cobburn Publications.

  55. Nouri-Baranger T. (2002). Sensitivity analysis and Optimization process applied to tensile fabric structures.4th ASMO UK/ISSMO Conference on Engineering Design Optimization, Newcastle, July 4–5, 133–140.

  56. Nouri-Baranger, T. and P. Trompette (2002). Optimal design of tensile fabric structures.The Sixth International Conference on Computational Structures Technology, 4–6 September, Prague, Czech Republic, pp. 16.

  57. Nouri-Baranger, T. (2002). Form-finding method of tensile fabric structures: revised geometric stiffness method.Journal of the International Association for Shell and Spatial Structures,43 (1), April N. 138, 13–22.

    Google Scholar 

  58. Nouri-Baranger, T., Sindel F. and Trompette P. (1999). A comparison of two form finding methods for tensiles fabric structures.40th Anniversary Congress of the International Association for Shell and Spatial Structures (IASS), 20–24 September, Madrid.

  59. Nouri-Baranger, T. and Trompette, T. (1997). Optimal cutting patterns to control Stress Field in three dimensional textile structures.The Second World Congress of Structural and Multidisciplinary Optimization. WCSMO-2, Zakopane, Poland, May 26–30, edited by W. Gutkowski and Mroz, 953–958.

  60. Nouri-Baranger, T. and Trompette, T. (1998). Fast reanalysis to find optimal stress field resulting from defaults in cutting patterns,ISSMO/NASA First Internet Conference on Approximations and Fast Reanalysis in Engineering Optimization, June 14–27.

  61. Nouri-Baranger, T. and Trompette, T. (1996). Nonlinear analysis for determining the optimal equilibrium state and the cutting pattern for fabric structure.8th Inter-Institute Seminar, Budapest, October 17–18.

  62. Osserman, R. (1969). A survey of minimal surfaces. Van Nostrand Reinhold.

  63. Pauli, N. (1994). Recherche de forme et analyse stratique orthotrope de membranes textiles architecturales.Thèse, Université Montpellier II.

  64. Phelan, D.G. and Haber, R.B. (1986). An integrated design method for cable-reinforced membrane structures, shells, membranes and spaces frames.Proceeding IASS Symposium,2, 119–125, Osaka.

    Google Scholar 

  65. Radó, T. (1933).On the problem of Plateau. Springer-Verlag.

  66. Ramm, E., Bletzinger, K.U. and Maute K. (1997). Structural optimization.Proc. IASS Colloquium, 201–216.

  67. Roddeman D.G., Drikker J., Oomens C.W. and Janssen J.D., The wrinkling of thin membranes: part I-Theory, transactions of the ASME, Vol. 54, pp 884–887, December 1987.

  68. Roddeman, D.G., Drikker, J., Oomens, C.W. and Janssen, J.D. (1987). The wrinkling of thin membranes. Part II: Numerical analysis.Transactions of the ASME,54, 888–892.

    MATH  Google Scholar 

  69. Scheck, H.J. (1989). The force density method for form finding an computation of general networks.Computer Aided Optimum Design of Structure: Recent Advances, 23–30, Southampton.

  70. Shimada, T. and Tada, Y. (1989). Development of curved surface using a finite elemnt method.Computer Aided Optimum Design of Structure: Recent Advances, Proceeding Conference, Southampton.

  71. Sindel, F., Nouri-Baranger, T. and Trompette, P. (1999). New CAD tools for the conception of fabric structures.The Seventh International Conference on Civil and Structural Engineering Computing, 13–15, September, Oxford, England.

  72. Sindel, F., Nouri-Baranger, T. and Trompette, P. (2001). Including optimization for the conception of fabric structures.Journal of Computers and Structures,79, (26–28), 2451–2459.

    Article  Google Scholar 

  73. Sindel, F. (1999). Conception et optimisation des structures textiles tendues.Thèse, Université Claude Bernard-Lyon1.

  74. Schwarz, H.A.Gesammelte Mathematische Abhandlungen. 2nd ed. New York, Chelsea.

  75. Swaddiwudhipong, S., Wang, C.M., Liew, K.M. and Lee, S.L. (1989). Optimal pretentioned forces for cables networks.Computers and Structures,33, 1349–1354.

    Article  MATH  Google Scholar 

  76. Tsubota, H., Yoshida, A. (1989). Theoretical analysis for determining optimum cutting patterns for membrane structures.Proc. IASS Symposium on Tensile Structures,3, 512–536, Madrid.

    Google Scholar 

  77. Tsubota, H., Yoshida A. and Kurokasa, Y. (1988). Theoretical analysis of actual initial equilibrium state for membrane structures based on cutting patterns.International Symposium on Innovation Applications of Shells and Spatial Forms, India.

  78. Tsubota, H. and Yoshida, A. (1989). Theoretical analysis for determining optimum cutting patterns for membrane structures.Proceeding IASS Symposium, Madrid.

  79. Vanderplaats, G.N. (1984).Numerical optimization techniques for engineering design with applications. Mc Graw-Hill.

  80. Véron, P., Léon, J.C., Trompette, P. (1998). Design of textile structures: methodologie and data architecture.Computers & Structures, N.67, 309–317.

    Article  MATH  Google Scholar 

  81. Wakefield, D., Barnes, M.R., Ong, C.F. (1989). Interactive graphic CAD for tension structures.International Conference on civil and Structural Engineering Computing, London.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thouraya Nouri-Baranger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouri-Baranger, T. Computational methods for tension-loaded structures. Arch Computat Methods Eng 11, 143 (2004). https://doi.org/10.1007/BF02905937

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02905937

Keywords

Navigation