Skip to main content
Log in

The systems-based design of high-strength, high-conductivity alloys

  • Conductive Materials
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A systems approach to the design of materials involves modeling the interactions of the processing-structure-property links. This approach leads to total optimization of properties both within and beyond the limits of any empirical approach. The design of precipitation-strengthened, high-strength, high-electrical-conductivity alloys provides a unique opportunity for demonstrating the efficiency of this approach. Using this computer-aided design, a new class of alloys with improved strength-conductivity combinations can be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SCM Metal Products (Alloys C15715, 15725, 15760), Cleveland, OH.

  2. H.L. Marcus, Z. Eliezer, and M.E. Fine, U.S. patent 5,338,374 (16 August 1994).

  3. Y. Sakai, K. Inoue, and H. Maeda,Acta Metall. Mater., 43 (1995), p. 1517.

    Article  CAS  Google Scholar 

  4. J. Bevk, J.P. Harbison, and J.L. Bell,J. Appl. Phys., 49 (1979), p. 6031.

    Article  Google Scholar 

  5. K.R. Karasek and J. Bevk,Scripta Metall., 13 (1979), p. 259.

    Article  CAS  Google Scholar 

  6. K.R. Karasek and J. Bevk,Scripta Metall., 14 (1980), p. 431.

    Article  CAS  Google Scholar 

  7. K.R. Karasek and J. Bevk,J. Appl. Phys., 52 (1981), p. 1370.

    Article  CAS  Google Scholar 

  8. J. Miyake and M.E. Fine,Acta Metall. Mater., 40 (1992), p. 733.

    Article  CAS  Google Scholar 

  9. C.S. Smith,A Search for Structure, (Cambridge, MA: MIT Press, 1981).

    Google Scholar 

  10. G.B. Olson,Innovations in Ultrahigh-Strength Steel Technology, ed. G.B. Olson, M. Azrin, and E.S. Wright (1990), p. 3.

  11. G.B. Olson,Morris E. Fine Symposium, ed. P.K. Liaw et al. (Warrendale, PA: TMS, 1991), p. 41.

    Google Scholar 

  12. M.F. Ashby,Symposium on Materials Design, ed. J.D. Embury, (Materials Park, OH: ASM, 1989).

    Google Scholar 

  13. M.F. Ashby,Materials Selection in Mechanical Design (Tarrytown, NY: Pergamon 1992).

    Google Scholar 

  14. B. Sundman, B. Jansson, and J.O. Andersson,CALPHAD, 9 (1985), p. 153.

    Article  CAS  Google Scholar 

  15. A. Engstrom, L. Hoglund, and J. Agren,Metall. Mater. Trans., 25A (1994), p. 1127.

    Article  Google Scholar 

  16. P.L. Rossiter,The Electrical Resistivity of Metals and Alloys (Cambridge, U.K.: Cambridge University Press, 1987).

    Google Scholar 

  17. V.L. Nordheim,Ann. Phys. 5 (1931), p. 642.

    Google Scholar 

  18. N.F. Mott and H. Jones,The Theory of the Properties of Metals and Alloys, (New York: Dover Publications, 1958).

    Google Scholar 

  19. T. Muto,Sci. Papers Inst. Phys. Chem. Res., 34 (1938), p. 377.

    CAS  Google Scholar 

  20. J.K. Stanley,Electrical and Magnetic Properties of Metals (Metals Park, OH: ASM, 1963), p. 53.

    Google Scholar 

  21. P.W. Taubenblatt, W.E. Smith, and A.R. Graviano,High Conductivity Copper and Aluminum Alloys, ed. E. Ling and P.W. Taubenblatt. (Warrendale, PA: TMS, (1984), p. 19.

    Google Scholar 

  22. R.B. Dingle,Proc. Royal Soc. London A, 201 (1950), p. 545.

    Article  Google Scholar 

  23. E.H. Sondheimer,Adv. Phys., 1 (1952), p. 1.

    Article  Google Scholar 

  24. R.A. Brown,J. Phys. F: Met. Phys., 7 (1977), p. 1269.

    Article  CAS  Google Scholar 

  25. R.A. Brown,J. Phys. F: Met. Phys., 7 (1977), p. 1283.

    Article  CAS  Google Scholar 

  26. T. Brown,Proc. Phys. Soc., London B, 65 (1952), p. 871.

    Article  Google Scholar 

  27. Z.S. Basinski and S. Saimoto,Can. J. Appl. Phys., 45 (1967), p. 1161.

    CAS  Google Scholar 

  28. T.H. Blewitt, R.R. Coltman, and J.K. Redman,Defects in Crystalline Solids, (London: Physical Soc., 1955), p. 369.

    Google Scholar 

  29. L.M. Clareborough, M.C. Hargreaves and M.H. Loretto,Phil. Mag., 7 (1962), p. 115.

    Article  Google Scholar 

  30. Z.S. Basinski, J.S. Dugdale, and A. Howie,Phil. Mag., 8 (1963), p. 1989.

    Article  CAS  Google Scholar 

  31. J.G. Rider and C.T.B. Foxon,Phil. Mag., 16 (1967), p. 1133.

    Article  CAS  Google Scholar 

  32. A. Seeger,Dislocations and Mechanical Properties of Crystals, ed. J.C. Fisher et al. (New York: John Wiley & Sons, 1957), p. 347.

    Google Scholar 

  33. A. Seeger,Can. J. Phys., 34 (1956), p. 1219.

    Article  CAS  Google Scholar 

  34. J.W. Christian and J. Spreadborough,Phil. Mag., 1 (1956), p. 1069.

    Article  CAS  Google Scholar 

  35. J.D. Verhoeven et al.,J. Appl. Phys., 65 (1989), p. 1293.

    Article  CAS  Google Scholar 

  36. D.K. Crampton, H.L. Berghoff, and J.T. Stacy,Trans. AIME, 137 (1940), p. 354.

    Google Scholar 

  37. V.N. Fedorov et al.,Russian Metall., 6 (1971), p. 128.

    Google Scholar 

  38. M.G. Corson,Proc. Inst. Metals Div. (1927), p. 435.

  39. M. Hansen,Constitution of Binary Alloys, (New York: McGraw Hill, 1958).

    Google Scholar 

  40. P.R. Subramanian and D.E. Laughlin,Bull. Alloy Phase Diagrams, 9 (1988), p. 322.

    Google Scholar 

  41. R.P. Elliott,Constitution of Binary Alloys, First Supplement (New York: McGraw Hill, 1965).

    Google Scholar 

  42. C. Zener,Thermodynamics in Physical Metallurgy (Metals Park, OH: ASM, 1950), p. 16.

    Google Scholar 

  43. W.L. Fink and H.R. Freche,Trans. Am. Soc. Metall. Engrs., 111 (1934), p. 304.

    Google Scholar 

  44. Copper Alloys Guide (Illinois: Olin Corp., 1992).

  45. Olin HSM Copper (Alloy 194), technical data (Illinois: Olin Corp.).

  46. T. Mura,Micromechanics of Defects in Solids (Dordrecht: Kluwer Academic Publishers, 1987).

    Google Scholar 

  47. C. Wagner,Z. Electrochem., 65 (1961), p. 581.

    CAS  Google Scholar 

  48. M.F. Ashby:Oxide Dispersion Strengthening, Metall. Soc. Conf. New York: Gordon and Breach, 1968).

    Google Scholar 

  49. J.W. Martin,Micromechanism in Particle-Hardened Alloys. (Cambridge, U.K.: Cambridge University Press, 1980).

    Google Scholar 

  50. I.F. Lifshitz and V.V. Slyozov,J. Phys. Chem. Solids, 19 (1961), p. 35.

    Article  Google Scholar 

  51. D. Hull and D.J. Bacon,Introduction to Dislocations (Oxford: Pergamon Press, 1989), p. 243.

    Google Scholar 

  52. J.G. Byrne, M.E. Fine, and A. Kelly,Phil. Mag., 6 (1961), p. 1119.

    Article  CAS  Google Scholar 

  53. J. Miyake and M.E. Fine,Scripta Metall., 25 (1991), p. 191.

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

G. Ghosh earned his Ph.D. in physical metallurgy from the Indian Institute of Technology, New Delhi, India, in 1986. He is currently a research assistant professor at Northwestern University.

J. Miyake earned his Ph.D. in materials science and engineering from Northwestern University in 1990. He is currently a senior research metallurgist for Nippon Mining and Metals Company in Japan.

M.E. Fine earned his Ph.D. in metallurgy from the University of Minnesota in 1943. He is currently an emeritus professor at Northwestern University. Dr. Fine is a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, G., Miyake, J. & Fine, M.E. The systems-based design of high-strength, high-conductivity alloys. JOM 49, 56–60 (1997). https://doi.org/10.1007/BF02914659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914659

Keywords

Navigation