Skip to main content
Log in

Temperature affects the production, activity and stability of ligninolytic enzymes inPleurotus ostreatus andTrametes versicolor

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Enzyme activity was determined in cultures ofPleurotus ostreatus andTrametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5–35 °C, the highest production being recorded at 25–30 °C inP. ostreatus and at 35 °C inT. versicolor. Production of both enzymes at 10 °C accounted only for 4–20 % of the maximum value. Temperature optima for enzyme activity were 50 and 55 °C forP. ostreatus andT. versicolor laccases, respectively, and 60 °C for MnP. Temperatures causing 50 % loss of activity after 24 h were 32 and 47 °C for laccases and 36 and 30 °C for MnP fromP. ostreatus andT. versicolor, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid

DMAB:

3,3-dimethylaminobenzoic acid

PO:

Pleurotus ostreatus

MBTH:

3-methyl-2-benzothiazolinone hydrazone

MnP:

manganese peroxidase

TV:

Trametes versicolor

References

  • Baborová P., Möder M., Baldrian P., Cajthamlová K., Cajthaml T.: Purification of a new manganese peroxidase of the whiterot fungusIrpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme.Res.Microbiol. 157, 248–253 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P.: Fungal laccases — occurrence and properties.FEMS Microbiol.Rev. 30, 215–242 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Boddy L.: Interspecific combative interactions between wood-decaying basidiomycetes.FEMS Microbiol.Ecol. 31, 185–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bourbonnais R., Paice M.G.: Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.FEBS Lett. 267, 99–102 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Collins P.J., Kotterman M.J.J., Field J.A., Dobson A.D.W.: Oxidation of anthracene and benzo[a]pyrene by laccases fromTrametes versicolor.Appl.Environ.Microbiol. 62, 4563–4567 (1996).

    PubMed  CAS  Google Scholar 

  • Couto S.R., Moldes D., Sanromán A.: Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase fromPhanerochaete chrysosporium. Application toin vitro decolorization of Poly R-478 by MnP.World J.Microbiol.Biotechnol. 22, 607–612 (2006).

    Article  CAS  Google Scholar 

  • Hatakka A.: Biodegradation of lignin, pp. 129–179 in M. Hofrichter, A. Steinbüchel (Eds):Lignin, Humic Substances and Coal. Wiley-VCH, Weinheim 2001.

    Google Scholar 

  • Höfer C., Schlösser D.: Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase.FEBS Lett. 451, 186–190 (1999).

    Article  PubMed  Google Scholar 

  • Hofrichter M.: Review: lignin conversion by manganese peroxidase (MnP).Enzyme Microb.Technol. 30, 454–466 (2002).

    Article  CAS  Google Scholar 

  • Hoshino F., Kajino T., Sugiyama H., Asami O., Takahashi H.: Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) fromLenzites betulinus.FEBS Lett. 530, 249–252 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Katagiri N., Tsutsumi Y., Nishida T.: Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white-rot fungi in the solid-state fermentation system.Appl.Environ.Microbiol. 61, 617–622 (1995).

    PubMed  CAS  Google Scholar 

  • Leontievsky A.A., Myasoedova N.M., Maltseva O.V., Termkhitarova N.G., Krupyanko V.I., Golovleva L.A.: Mn-dependent peroxidase and oxidase ofPanus tigrinus 8/18 — purification and properties.Biochemistry (Moscow) 55, 1375–1380 (1990).

    Google Scholar 

  • Mester T., Field J.A.: Optimization of manganese peroxidase production by the white-rot fungusBjerkandera sp. strain BOS55.FEMS Microbiol.Lett. 155, 161–168 (1997).

    Article  CAS  Google Scholar 

  • Michniewicz A., Ullrich R., Ledakowicz S., Hofrichter M.: The white-rot fungusCerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties.Appl.Microbiol.Biotechnol. 69, 682–688 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ngo T.T., Lenhoff H.M.: A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions.Anal.Biochem. 105, 389–397 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Nyanhongo G.S., Gomes J., Gübitz G., Zvauya R., Read J.S., Steiner W.: Production of laccase by a newly isolated strain ofTrametes modesta.Biores.Technol. 84, 259–263 (2002).

    Article  CAS  Google Scholar 

  • Rogalski J., Dawidowicz A.L., Leonowicz A.: Purification and immobilization of the inducible form of extracellular laccase of the fungusTrametes versicolor.Acta Biotechnol. 10, 261–269 (1990).

    Article  CAS  Google Scholar 

  • Šnajdr J., Baldrian P.: Production of lignocellulose-degrading enzymes and changes of soil bacterial communities during the growth ofPleurotus ostreatus in soil with different carbon content.Folia Microbiol. 51, 579–590 (2006).

    Article  Google Scholar 

  • Vasdev K., Dhawan S., Kapoor R.K., Kuhad R.C.: Biochemical characterization and molecular evidence of a laccase from the bird’s nest fungusCyathus bulleri.Fungal Genet.Biol. 42, 684–693 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Vyas B.R.M., Volc J., Šašek V.: Effects of temperature on the production of manganese peroxidase and lignin peroxidase byPhanerochaete chrysosporium.Folia Microbiol. 39, 19–22 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baldrian.

Additional information

This study was supported by theGrant Agency of the Academy of Sciences of the Czech Republic (no. B600 200 516), by theMinistry of Education of the Czech Republic (LC06066 and OC155/868) and by the Institutional Research Concept of theInstitute of Microbiology, Academy of Sciences of the Czech Republic (no. AV0Z 5020 0510).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šnajdr, J., Baldrian, P. Temperature affects the production, activity and stability of ligninolytic enzymes inPleurotus ostreatus andTrametes versicolor . Folia Microbiol 52, 498–502 (2007). https://doi.org/10.1007/BF02932110

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932110

Keywords

Navigation