Skip to main content
Log in

Application of principal component analysis and self-organizing map to the analysis of 2D fluorescence spectra and the monitoring of fermentation processes

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinantEscherichia coli andSaccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

BMU:

Best matching unit

BPNN:

Backpropagation neural network

CWL:

Combinations of the excitation and emission wavelength

DCW:

Dry cell weight

DO:

Dissolved oxygen concentration (%)

E :

Residual matrix

EGFP:

Enhanced green fluorescent protein

FmPro:

Fermentation process

GSH:

Glutathione

IPTG:

Isopropylthiogalactoside

LA:

Levulinic acid

LB:

Luria bertini medium

NMR:

Nuclear magnetic resonance

P :

Loading matrix

PBG:

Porphobilinogen

PC:

Principal component

PCA:

Principal component analysis

Q :

Scores matrix

PLS:

Partial least square regression analysis

SM:

Chemically defined medium

SOM:

Self-organizing map

X:

Given spectral matrix

References

  1. Sonnleitner, B. (2000) Instrumentation of biotechnological processes. pp. 1–64. In: K. Schugerl (ed.):Advances in Biochemical Engineering and Biotechnology. Springer, Berlin, Germany.

    Google Scholar 

  2. Harms, P., Y. Kostov, and G. Rao (2002) Bioprocess monitoring.Curr. Opin. Biotechnol. 13: 124–127.

    Article  CAS  Google Scholar 

  3. Hantelmann, K., M. Kollecker, D. Hull, B. Hitzmann, and T. Scheper (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations.J. Biotechnol. 121: 410–417.

    Article  CAS  Google Scholar 

  4. Schügerl, K., C. Lindemann, S. Marose, and T. Scheper (1998) Two-dimensional fluorescence spectroscopy for on-line bioprocess monitoring. pp. 1–27.Course Material for the Bioprocess Engineering Course. Supertar, Island of Brac, Croatia.

    Google Scholar 

  5. Mukherjee, J., C. Lindermann, and T. Scheper (1999) Fluorescence monitoring during cultivation ofEnterobacter aerogenes at different oxygen levels.Appl. Microbiol. Biotechnol. 52: 489–494.

    Article  CAS  Google Scholar 

  6. Boehl, D., D. Solle, B. Hitzmann, and T. Scheper (2003) Chemometric modelling with two-dimensional fluorescence data forClaviceps purpurea bioprocess characterization.J. Biotechnol. 105: 179–188.

    Article  CAS  Google Scholar 

  7. Tartakovsky, B., M. Scheintuch, J.-M. Hilmer, and T. Scheper (1996) Application of scanning fluorometry for monitoring of a fermentation process.Biotechnol. Prog. 12: 126–131.

    Article  CAS  Google Scholar 

  8. Marose, S., C. Lindemann, and T. Scheper (1998) Two-dimensional fluorescence spectroscopy: a new tool for online bioprocess monitoring.Biotechnol. Prog. 14: 63–74.

    Article  CAS  Google Scholar 

  9. Wolf, G., J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. M. Reis, and J. G. Crespo (2001) Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes.Biotechnol. Bioeng. 72: 297–306.

    Article  CAS  Google Scholar 

  10. Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001) On-line bioprocess monitoring with a multiwavelength fluorescence sensor using multivariate calibration.J. Biotechnol. 88: 47–57.

    Article  CAS  Google Scholar 

  11. Cimander, C. and C. F. Mandenius (2002) Online monitoring of a bioprocess based on a multi-analyser system and multivariate, statistical process modelling.J. Chem. Technol. Biotechnol. 77: 1157–1168.

    Article  CAS  Google Scholar 

  12. Hisiger, S. and M. Jolicoeur (2005) A multiwavelength fluorescence probe: is one probe capable for on-line monitoring of recombinant protein production and biomass activity?.J. Biotechnol. 117: 325–336.

    Article  CAS  Google Scholar 

  13. Eliasson Lantz, A., P. Jorgensen, E. Poulsen, C. Lindemann, and L. Olsson (2006) Determination of cell mass and polymyxin using multi-wavelength fluorescence.J. Biotechnol. 121: 544–554.

    Article  CAS  Google Scholar 

  14. Haack, M. B., A. Eliasson, and L. Olsson (2004) On-line cell mass monitoring ofSaccharomyces cerevisiae cultivations by multi-wavelength fluorescence.J. Biotechnol. 114: 199–208.

    Article  CAS  Google Scholar 

  15. Jolliffe, I. T. (1986)Principal Component Analysis. Springer, New York, NY, USA.

    Google Scholar 

  16. Bro, R. (2003) Multivariate calibration. What is in chemometrics for the analytical chemist?Anal. Chim. Acta 500: 185–194.

    Article  CAS  Google Scholar 

  17. Dufour, E. and A. Riaublanc (1997) Potentiality of spectroscopic methods for the characterization of dairy products. I. Front-face: fluorescence study of raw, heated and homogenized milk.Lait 77: 657–670.

    Article  CAS  Google Scholar 

  18. Guimet, F. J. Ferre, R. Boque, and F. X. Rius (2004) Application of unfold principal component analysis and parallel factor analysis to the extrapolatory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy.Anal. Chim. Acta 515: 75–85.

    Article  CAS  Google Scholar 

  19. Tartakovsky, B., L. A. Lishman, and R. L. Legge (1996) Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics.Water Res. 30: 2941–2948.

    Article  CAS  Google Scholar 

  20. Dow, L. K., S. Kalelkar, and E. R. Dow (2004) Selforganizing maps for the analysis of NMR spectra.BioSilico 2: 157–163.

    CAS  Google Scholar 

  21. Kolehmainen, M., P. Ronkko, and O. Raatikainen (2003) Monitoring of yeast fermentation by ion mobility spectrometry measurement and data visualization with selforganizing maps.Anal. Chim. Acta 484: 93–100.

    Article  CAS  Google Scholar 

  22. Debeljak, Z., M. Strapac, and M. Medic-Saric (2001) Application of self-organizing maps for the classification of chromatographic systems and prediction of values of chromatographic quantities.J. Chromatogr. A 925: 31–40.

    Article  CAS  Google Scholar 

  23. Rhee, J. I., K.-I. Lee, C.-K. Kim, Y.-S. Yim, S.-W. Chung, J. Wei, and K.-H. Bellgardt (2005) Classification of two-dimensional fluorescence spectra using self-organizing maps.Biochem. Eng. J. 22: 135–144.

    Article  CAS  Google Scholar 

  24. Chung, S.-Y., K.-H. Seo, and J. I. Rhee (2005) Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinantE. coli.Process Biochem. 40: 385–394.

    Article  CAS  Google Scholar 

  25. Shimizu, H., K. Araki, S. Shioya, and K.-I. Suga (1991) Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture.Biotechnol. Bioeng. 38: 196–205.

    Article  CAS  Google Scholar 

  26. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues.Anal. Biochem. 27: 502–522.

    Article  CAS  Google Scholar 

  27. Teshima, N., H. Katsumate, M. Kurihara, T. Sakai, and T. Kawashima (1999) Flow-injection determination of copper (II) based on its catalysis on the redox reaction of cysteine with iron (III) in the presence of 1,10-phenanthroline.Talanta 50: 41–47.

    Article  CAS  Google Scholar 

  28. Geladi, P., B. Sthson, J. Nystrom, T. Lillhinga, T. Lestander, and J. Burger (2004) Chemometrics in Spectroscopy.Spectrochim. Acta Part B 59: 1347–1357.

    Google Scholar 

  29. Lee, K.-I., Y.-S. Yim, S.-W. Chung, J. Wei, and J. I. Rhee (2005). Application of artificial neural networks to the analysis of two-dimensional fluorescence spectra in recombinantE. coli fermentation processes.J. Chem. Technol. Biotechnol. 80: 1036–1045.

    Article  CAS  Google Scholar 

  30. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein inEscherichia coli using silkworm hemolymph.Biotechnol. Bioprocess Eng. 10: 353–356.

    Article  CAS  Google Scholar 

  31. Rhee, J. I., A. Ritzka, and T. Scheper (2004) On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems.Biotechnol. Bioprocess Eng. 9: 156–165.

    Article  CAS  Google Scholar 

  32. Hur, W. and Y.-K. Chung (2005) On-line monitoring of IPTG induction for recombinant protein production using an automatic pH control signal.Biotechnol. Bioprocess Eng. 10: 304–308.

    Article  CAS  Google Scholar 

  33. Munoz de la Pena, A., N. Mora Diez, D. B. Gil, A. C. Olivieri, and G. M. Escandar (2006) Simultaneous determination of flufenamic and meclofenamic acids in human urine samples by second-order multivariate parallel factor analysis (PARAFAC) calibration of micellar-enhanced excitation-emission fluorescence data.Anal. Chim. Acta 569: 250–259.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Il Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, J.I., Kang, TH., Lee, KI. et al. Application of principal component analysis and self-organizing map to the analysis of 2D fluorescence spectra and the monitoring of fermentation processes. Biotechnol. Bioprocess Eng. 11, 432–441 (2006). https://doi.org/10.1007/BF02932311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932311

Keywords

Navigation