Skip to main content
Log in

Recent trends in the biosorption of heavy metals: A review

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Considerable attention has been focused in recent years upon the field of biosorption for the removal of metal ions from aqueous effluents. Compared to other technologies, the advantages of biosorption are the high purity of the treated waste water and the cheap raw material. Really, the first major challenge for the biosorption field is to select the most promising types of biomass. Abundant biomass types either generated as a waste by-product of large-scale industrial fermentations particularly fungi or certain metal-binding seaweeds have gained importance in recent years due to their natural occurrence, low cost, and, of course, good performance in metal biosorption. Industrial solutions commonly contain multimetal systems or several organic and inorganic substances that form complexes with metals at relatively high stability forming a very complex environment. When several components are present, interference and competition phenomena for sorption sites occur and lead to a more complex mathematical formulation of the process. The most optimal configuration for continuous flow-biosorption seems to the packed-bed column which gets gradually saturated from the feed to the solution exit end. Owing to the competitive ion exchange taking place in the column, one or more of the metals present even at trace levels may overshoot the acceptable limit in the column effluent before the breakthrough point of the targeted metal. Occurrence of ‘overshoot's and impact on heavy metal removal has not been analyzed enough. New trends in biosorption are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veglio, E. and E. Beolchini (1997) Removal of metals by biosorption: A review.Hydrometallurgy 44: 301–316.

    Article  CAS  Google Scholar 

  2. Tsezos, M. and B. Volesky (1982) The mechanism of uranium biosorption byRhizopus arrhizus.Biotechnol. Bioeng. 24: 385–401.

    Article  CAS  Google Scholar 

  3. Kuyucak, N. and B. Volesky (1988) Brosorbents for recovery of metals from industrial solutions.Biotechnol. Lett. 10: 137–142.

    Article  CAS  Google Scholar 

  4. Tsezos, M. and B. Volesky (1981) Biosorption of uranium and thorium.Biotechnol. Bioeng. 23: 583–604.

    Article  CAS  Google Scholar 

  5. Remacle, J. (1990) The cell wall and metal binding. pp. 83–92. In: B. Volesky (ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  6. Scott, J. A. and S. J. Palmer (1990) Sites of cadmium uptake in bacteria used for biosorption.Appl. Microbiol. Biotechnol 33: 221–225.

    Article  CAS  Google Scholar 

  7. Brierley, C. L. (1990) Bioremediation of metal-contaminated surfaces and ground waters.Geomicrobiol. J. 8: 201–223.

    Article  CAS  Google Scholar 

  8. Mann, H. (1990) Biosorption of heavy metals by bacterial biomass. pp. 93–138. In: B. Volesky (ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  9. Norberg, A. and H. Persson (1984) Accumulation of heavy metal ions byZoogloea ramigera.Biotechnol. Bioeng. 26: 239–245.

    Article  CAS  Google Scholar 

  10. Chang, J. S. and J. Hong (1994) Biosorption of mercury by the inactivated cells ofPseudomonas acruinosa.Biotechnol. Bioeng. 44: 999–1006.

    Article  CAS  Google Scholar 

  11. Bailey, J. E. and D. E. Ollis (1977)Biochemical Engineering fundamentals. p. 15–21, 249, McGraw-Hill, NY, USA.

    Google Scholar 

  12. Shuler, M. L. and F. Kargi, (1992)Bioprocess Engineering: Basic Concepts. Prentice Hall, Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  13. Volesky, B. (1990) Biosorption by fungal biomass, pp. 139–171. In: B. Volesky (ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  14. Huang, C. and C. P. Huang (1996) Application ofAspergillus oryzae andRhizopus oryzae for Cu (II) removal.Wat. Res. 30: 1985–1990.

    Article  CAS  Google Scholar 

  15. Sa□, Y., I. Ataço□lu, and T. Kutsal (1999) Simultaneous biosorption of chromium(VI) and copper(II) onRhizopus arrhizus in packed column reactor: application of the competitive Freundlich model.Sep. Sci. Technol. 34: 3155–3171.

    Article  Google Scholar 

  16. Sa□, Y. (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review.Separ. Purif. Method. 30: 1–48.

    Article  Google Scholar 

  17. Sa□lam, N., R. Say, A. Denizli, S. Pat□r, and M. Y. Ar□ca (1999): Biosorption of inorganic mercury and alkylmercury species on toPhanerochaete chrysosporium mycelium.Process Biochem. 34: 725–730.

    Article  Google Scholar 

  18. Muraleedharan, T.R. and C. Venkobachar (1990) Mechanism of biosorption of copper(II) byGanoderma lucidum.Biotechnol. Bioeng. 35: 320–325.

    Article  CAS  Google Scholar 

  19. Rao, C. R. N., L. Iyengar, and C. Venkobachar (1993) Sorption of copper(II) from aqueous phase by waste biomass.J. Environ. Eng. 119: 369–377.

    Article  CAS  Google Scholar 

  20. Chong, K. H. and B. Volesky (1996) Metal biosorption equilibria in a ternary system.Biotechnol. Bioeng. 49: 629–638.

    Article  CAS  Google Scholar 

  21. Wang, T. C., J. C. Weissman, G. Ramesh, R. Varadarajan, and J. R. Benemann (1998) Heavy metal binding and removal byPhormidium.Bull. Environ. Contamin. Toxicol. 60: 739–744.

    Article  CAS  Google Scholar 

  22. Özer, D. Z. Aksu, T. Kutsal, and A. ça□lar (1994) Adsorption isotherms of lead(II) and chromium(VI) onCladophora crispata.Environ. Technol. 15: 439–448.

    Article  Google Scholar 

  23. Holan, Z. R., B. Volesky, and I. Prasetyo (1993) Biosorption of cadmium by biomass of marine algae.Biotechnol. Bioeng. 41: 819–825.

    Article  CAS  Google Scholar 

  24. Volesky, B. Advances in biosorption of metals. Selection of biomass types.FEMS Microbiol. Rev. 14: 291–302.

  25. Kuyucak, N. and B. Volesky (1990) Biosorption by algal biomass. pp. 173–198. In: B. Volesky (ed.):Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida USA.

    Google Scholar 

  26. Wilde, E. W. and J. R. Benemann (1993) Bioremoval of heavy metals by the use of microalgae.Biotechnol. Adv. 11: 781–812.

    Article  CAS  Google Scholar 

  27. Fourest, E. and B. Volesky (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass ofSargassum fluitans.Environ. Sci. Technol. 30: 277–282.

    Article  CAS  Google Scholar 

  28. Kratochvil, E., E. Fourest, and B. Volesky (1995) Biosorption of copper bySargassum fluitans biomass in a fixed bed column.Biotechnol. Lett. 17: 777–782.

    Article  CAS  Google Scholar 

  29. Yu, Q., J. T. Matheickal, P. Yin, and K. Pairat (1999) Heavy metal uptake capacities of common marine macro algal biomass.Water Res. 33: 1534–1537.

    Article  CAS  Google Scholar 

  30. Kratochvil, D. and B. Volesky (1998) Advances in the biosorption of heavy metals.Trends Biotechnol. 16: 291–300.

    Article  CAS  Google Scholar 

  31. Sa□, Y. and T. Kutsal (1995) Biosorption of heavy metals byZeogloca ramigera: Use of adsorption isotherms and a comparison of biosorption characteristics.Chem. Eng. J. 60: 181–188.

    Google Scholar 

  32. McKay, G., Y. S. Ho, and J. C. Y. Ng (1999) Blosorption of copper from waste waters: A review.Separ. Purif. Method. 28: 87–125.

    Article  CAS  Google Scholar 

  33. Schiewer, S. and B. Volesky (1996) Modeling multi-metal ion exchange in biosorption.Environ. Sci. Technol. 30: 2921–2927.

    Article  CAS  Google Scholar 

  34. Schiewer, S. and B. Volesky (1997) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons.Environ. Sci. Technol. 31: 2478–2485.

    Article  CAS  Google Scholar 

  35. Schiewer, S. and B. Volesky (1997) Ionic strength and electrostatic effects in biosorption of protons.Environ. Sci. Technol. 31: 1863–1871.

    Article  CAS  Google Scholar 

  36. Bohart, G. and E. Q. Adams (1920) Some aspects of the behaviour of charcoal with respect to chlorine.J. Am. Chem. Soc. 42: 523–544.

    Article  CAS  Google Scholar 

  37. Guibal E., R. Lorenzelli, T. Vincent, and P. Le Cloirec (1995) Application of silica gel to metal ion sorption: static and dynamic removal of uranyl ions.Environ. Technol. 16: 101–114.

    Article  CAS  Google Scholar 

  38. Wolborska, A. (1989) Adsorption on activated carbon ofp-nitrophenol from aqueous solution.Wat. Res. 23: 85–91.

    Article  CAS  Google Scholar 

  39. Sa□, Y. and Y. Aktay (2001) Application of equilibrium and mass transfer models to dynamic removal of Cr(VI) ions by chitin in packed column reactor.Process Biochem. 36: 1187–1197.

    Article  Google Scholar 

  40. Clark, R. M. (1987) Evaluating the cost and performance of field-scale granular activated carbon systems.Environ. Sci. Technol. 21: 573–580.

    Article  CAS  Google Scholar 

  41. Trujillo, E. M., T. H. Jeffers, C. Freguson, and H. Q. Stevenson (1991) Mathematically modeling the removal of heavy metals from a waste water using immobilized biomass.Environ Sci. Technol. 25: 1559–1565.

    Article  CAS  Google Scholar 

  42. Sa□, Y., I. Ataço□lu, and T. Kutsal (2000) equilibrium parameters for the single-and multicomponent biosorption of Cr(VI) and Fe(III) ions onR. arrhizus in a packed column.Hydrometallurgy 55: 165–179.

    Article  Google Scholar 

  43. Singh, R. and B. B. Prasad (2000) Trace metal analysis: selective sample (copper II) enrichment on an AlgaSORB column.Process Biochem. 35: 897–905.

    Article  CAS  Google Scholar 

  44. Patil, Y. B. and K. M. Paknikar (1999) Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes.Biotechnol. Lett. 21: 921–919.

    Article  Google Scholar 

  45. Gomes, N. C. M., M. M. Figueira, E. R. S. Camargos, L. C. S. Mendonça-Hagler, J. C. T. Dias, and V. R. Linardi (1999) Cyano-metal complexes uptake byAspergillus niger.Biotechnol. Lett. 21: 487–490.

    Article  CAS  Google Scholar 

  46. Singh, S., S. Pradhan, and L. C. Rai (2000) Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry.Process Biochem. 36: 175–182.

    Article  CAS  Google Scholar 

  47. Chang, J.-S. and C-C. Chen (1998) Quantitative analysis and equilibrium models of selective adsorption in multimetal systems using a bacterial biosorbent.Separ. Sci. Technol. 33: 611–632.

    Article  CAS  Google Scholar 

  48. Figueira, M. M., B. Volesky, and V. S. T. Ciminelli (1997) Assessment of interference in biosorption of a heavy metal.Biotechnol. Bioeng. 54: 344–350.

    Article  CAS  Google Scholar 

  49. Sa□, Y. and T. Kutsal (1996) Fully competitive biosorption of chromium(VI) and iron(III) ions from binary metal mixtures byR. arrhizus: Use of the competitive Langmuir model.Process Biochem. 31: 573–585.

    Article  Google Scholar 

  50. Chong, K. H. and B. Volesky (1995) Description of twometal biosorption equilibria by Langmuir-type models.Biotechnol. Bioeng. 47: 451–460.

    Article  CAS  Google Scholar 

  51. de Carvalho, R. P., K.-H. Chong, and B. Volesky (1995) Evaluation of the Cd, Cu and Zn biosorption in twometal systems using algal biosorbent.Biotechnol. Prog. 11: 39–44.

    Article  Google Scholar 

  52. Soldatov, V. S. and V. A. Bichkova (1980) Ternary ionexchange equilibria.Sep. Sci. Technol. 15: 89–110.

    Article  Google Scholar 

  53. Soldatov, V. S. and V. A. Bichkova (1985) Binary ion exchange selectivity coefficients in multiionic systems.React. Polym. 3: 199–206.

    CAS  Google Scholar 

  54. Sa□, Y., B. Akçael, and T. Kutsal (2001) Evaluation interpretation, and representation of three-metal biosorption equilibria using a fungal biosorbent.Process Biochem. 37: 35–50.

    Article  Google Scholar 

  55. Sa□, Y., B. Akçael, and T. Kutsal (2002) Ternary Biosorption Equilibria of Chromium(VI), Copper(II), and Cadmium(II) onRhizopus arrhizus. Separ. Sci. Technol. in press.

  56. Dilek, E. B., C. F. Gökçay, and Ü. Yetis (1998) Combined effects of Ni(II) and Cr(VI) on activated sludge.Wat. Res. 32: 303–312.

    Article  CAS  Google Scholar 

  57. Utgikar, V., B.-Y. Chen, H. H. Tabak, D. F. Bishop, and R. Govind (2000) Treatment of acid mine drainage: I. Equilibrium biosorption of zinc and copper on non-viable activated sludge.Int. Biodeter. Biodegr. 46: 19–28.

    Article  CAS  Google Scholar 

  58. Chua, H., P. H. F. Yu, S. N. Sin, and M. W. L. Cheung (1999) Sub-lethal effects of heavy metals on activated sludge microorganisms.Chemosphere 39: 2681–2692.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Sag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sag, Y., Kutsal, T. Recent trends in the biosorption of heavy metals: A review. Biotechnol. Bioprocess Eng. 6, 376–385 (2001). https://doi.org/10.1007/BF02932318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932318

Keywords

Navigation