Skip to main content
Log in

Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Critical cell density (CCD), the maximum cell concentration without mutual shading in algal cultures, can be used as a new operating parameter for high-density algal cultures and for the application of the flashing light effect on illuminated algal cultures. CCD is a function of average cell volume and light illumination area. The CCD is thus proposed as an index of estimation of mutual shading in algal cultures. Where cell densities are below the CCD, all the cells in photobio-reactors can undergo photosysnthesis at their maximum rate. At cell densities over the CCD, mutual shading will occur and some cells in the illumination chamber cannot grow photoautotrophically. When the cell concentration is higher than the CCD, specific oxygen production rates under flashing light were higher than those under continuous light. The CCD was found to be a useful engineering parameter for the application of flashing light, particularly in high-density algal cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Porovitzka, M. A. (1992) Algal biotechnology products and processes-matching science and economics.J. Appl. Physiol. 4: 267–279.

    Google Scholar 

  2. Jensen, A. (1993) Present and future needs for algae and algal products.Hydrobiologia 260/261: 15–23.

    Article  Google Scholar 

  3. Munro, M. H. G., J. W. Blunt, E. J. Dumdei, S. J. H. Hickford, R. E. Lill, S. Li, C. N. Battershill, and A. R. Duckworth (1999) The discovery and development of marine compounds with pharmaceutical potential.J. Biotechnol. 70: 15–25.

    Article  CAS  Google Scholar 

  4. Oohusa, T. (1993) Recent trends in nori products and markets in Asia.J. Appl. Phycol. 5: 155–159.

    Article  Google Scholar 

  5. Gudin, C. and C. Thepenier (1986) Bioconversion of solar energy into organic chemicals by microalgae, pp. 73–110. In: A. Mizrahi and A. L. von Wezel (eds.).Advances in Biotechnological Processes, Vol 6. Alan R. Liss, Inc., New York, NY, USA.

    Google Scholar 

  6. Vilchez, C., I. Garbayo, M. V. Lobato, and J. M. Vega (1997) Microalgae-mediated chemicals production and waste removal.Enzyme Microb. Technol. 20: 562–572.

    Article  CAS  Google Scholar 

  7. Molina Grima, E., J. A. Sanchez Perez, F. Garcia Camacho, J. M. Fernandez Sevilla, F. G. Acien Fernandez, and J. Urda Cardona (1995) Biomass and icosapentaenoic acid productivities from an outdoor batch culture ofPhacodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor.Appl. Microbiol. Biotechnol. 42: 658–663.

    Article  CAS  Google Scholar 

  8. Pirt, S. J., Y.-K. Lee, M. R. Walach, M. W. Pirt, H. H. M. Balyuzi, and M. J. Bazin (1983) A tubular photobioreactor for photosynthetic production of biomass from CO2: Design and performance.J. Chem. Tech. Biotechmol. 33B: 35–53.

    CAS  Google Scholar 

  9. Hu, Q., H. Guterman, and A. Richmond (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs.Biotechnol. Bioeng. 51: 51–60.

    Article  CAS  Google Scholar 

  10. Lee, C.-G. and B. O. Palsson (1994) High-density algal photobioreactor using light-emitting diodes.Biotechnol. Bioeng. 44: 1161–1167.

    Article  CAS  Google Scholar 

  11. Lee, C.-G. (1999) Calculation of light penetration depth in photobioreactors.Biotechnol. Bioprocess Eng. 4: 78–81.

    Article  CAS  Google Scholar 

  12. Acien Fernandez, F. G., F. Garcia Camacho, J. A. Sanchez Perez, J. M. Feranadez Sevilla, and E. Molina Grima (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance.Biotechnel. Bioeng. 58: 605–616.

    Article  CAS  Google Scholar 

  13. Hu, Q. and H. Guterman (1996) Physiological characteristics ofSpirulina platensis (cyanobacteria) cultured at ultrahigh cell density.J. Phycol. 32: 1066–1073.

    Article  Google Scholar 

  14. Kok, B., B. Forbush, and M. McGloin (1970) Cooperation of charges in photosynthetic O2 evolution: I. A linear four step mechanism.Photochem. Photobiol. 11: 457–475.

    Article  CAS  Google Scholar 

  15. Emerson, R. and W. Arnold (1932) A separation of the reactions in photosynthesis by means of intermittent light.J. Gen. Physiol. 15: 391–420.

    Article  CAS  Google Scholar 

  16. Park, K.-H. and C.-G. Lee (2000) Optimization of algal photobioreactors using flashing lights.Biotechnol. Bioprocess Eng. 5: 186–190.

    Article  CAS  Google Scholar 

  17. Phillips, J. N. and J. Myers (1954) Growth rate ofChlorella in flashing light.Plant Physiol. 29: 152–161.

    Article  CAS  Google Scholar 

  18. Laws, E. A., K. L. Terry, J. Wickman, and M. S. Chaup (1983) A simple algal production system designed to utilize the flashing light effect.Biotechnol. Bioeng. 25: 2319–2335.

    Article  CAS  Google Scholar 

  19. Nedbal, L., V. Tichy, E. Xiong, and J. U. Grobbelaar (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light.J. Appl. Phycol. 8: 325–333.

    Article  CAS  Google Scholar 

  20. Park, K.-H., D.-I. Kim, and C.-G. Lee (2000) Effect of flashing light on oxygen production rates in high-density algal cultures.J. Microbiol. Biotechnol. 10: 817–822.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KH., Lee, CG. Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density. Biotechnol. Bioprocess Eng. 6, 189–193 (2001). https://doi.org/10.1007/BF02932549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932549

Keywords

Navigation