Skip to main content
Log in

A theoretical consideration on oxygen production rate in microalgal cultures

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabinowitch, E. (1961) Spectral efficiency of photosynthesis. pp. 274–298. In: P. A. Campbell (ed.).Medical and Biological Aspects of the Energies of Space) Columbia University Press, New York, NY, USA.

    Google Scholar 

  2. Rabinowitch, E. I. (1945)Chemistry of Photosynthesis, Chemosynthesis and Related Processes in Vitro and in Vivo. Interscience Publishers, New York, NY, USA.

    Google Scholar 

  3. Krauss, R. W. and A. Osretkar (1961)Minimum and Maximum Tolerances of Algae to Temperature and Light Intensity. Columbia University Press, New York, NY, USA.

    Google Scholar 

  4. Thacker, D. R. and H. Babcock (1957) The mass culture of algae.J. Sol. Energy Science. Eng. 1: 37–49.

    Google Scholar 

  5. Kyle, D. J., C. B. Osmond, and C. J. Arntzen (1987)Photoinhibition. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  6. Lee, C.-G. (1999) Calculation of light penetration depth in photobioreactors.Biotechnol. Bioprocess Eng. 4: 78–81.

    Article  CAS  Google Scholar 

  7. Lee, C.-G. and B. O. Palsson (1994) High-density algal photobioreactors using light-emitting diodes.Biotechnol. Bioeng. 44: 1161–1167.

    Article  CAS  Google Scholar 

  8. Vonshak, A. (1986) Laboratory techniques for the cultivation of microalgae. pp. 117–145. In: A. Richmond (ed.).Handbook of Microalgal Mass Culture). CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  9. Hoover, J. K. (1984)Chloroplasts. Plenum Press, New York, NY, USA.

    Google Scholar 

  10. Kok, B. (1952) On the efficiency ofChlorella growth.Acta Bot. Neerl. 1: 445–467.

    CAS  Google Scholar 

  11. Myers, J. (1980) On the algae: thoughts about physiology and measurements of efficiency. pp. 1–16. In: P. G. Falkowski (ed.).Primary Productivity in the Sea). Plenum Press, New York, NY, USA.

    Google Scholar 

  12. Pirt, S. J. (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth.New Phytol. 102: 3–37.

    Article  Google Scholar 

  13. Lehninger, A. L. (1982)Principles of Biochemistry. Worth Publisher, New York, NY, USA.

    Google Scholar 

  14. Stryer, L. (1995)Biochemistry. W. H. Freeman and Company, New York, NY, USA.

    Google Scholar 

  15. Hill, R. and F. Bendall (1960) Function of the two cytochrome components in chloroplasts: A working hypothesis.Nature 186: 136–137.

    Article  CAS  Google Scholar 

  16. Emerson, R. and C. M. Lewis (1943) The dependence of quantum yield ofChlorella photosynthesis on wave length of light.Amer. J. Bot. 30: 165–178.

    Article  CAS  Google Scholar 

  17. Pirt, S. J., Y.-K. Lee, A. Richmond, and M. W. Pirt (1980) The photosynthetic efficiency ofChlorella biomass growth with reference to solar energy utilization.J. Chem. Tech. Biotechnol. 30: 25–34.

    CAS  Google Scholar 

  18. Kok, B. (1960) Efficiency of photosynthesis. pp. 566–633. In: W. Ruhland (ed.).Encyclopedia of Plant Physiology). Springer, Berlin, Germany.

    Google Scholar 

  19. Duysens, L. N. M. (1956) The flattening of the absorption spectrum of suspensions, as compared to that of solutions.Biochem. Biophys. Acta 19: 1–12.

    Article  CAS  Google Scholar 

  20. Morel, A. and A. Bricaud (1981) Theoretical results concerning light absorption in a discrete nedium, and application to specific absorption of phytoplankton.Deep-Sea Research 28A: 1375–1393.

    Article  Google Scholar 

  21. Aiba, S. (1982) Growth kinetics of photosynthetic microorganisms. pp. 85–156. In: A. Fiechter (ed.).Microbial Reactions (Adv. Biochem. Eng., vol. 23). Springer-Verlag, Berlin, Germany.

    Google Scholar 

  22. Mie, G. (1908) Beitrage zur optik truber medien, speziell kolloidaler metallosungen.Ann. Phys. 25: 377–445.

    Article  CAS  Google Scholar 

  23. Van de Hulst, H. C. (1957)Light Scattering by Small Particles. John Wiley, New York, NY, USA.

    Google Scholar 

  24. Cornet, J. F., C. G. Dussap, and G. Dubertret (1992) A structured model for simulation of cultures of the cyanobacteriumSpirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics.Biotechnol. Bioeng. 38: 817–882.

    Article  Google Scholar 

  25. Cornet, J. F., C. G. Dussap, P. Cluzel, and G. Dubertret (1992) A structured model for simulation of cultures of the cyanobacteriumSpirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations.Biotechnol. Bioeng. 38: 826–834.

    Article  Google Scholar 

  26. Frohlich, B. T., I. A. Webster, M. M. Ataai, and M. L. Shuler (1983) Photobioreactors: models for interaction of light intensity, reactor design, and algal physiology.Biotechnol. Bioeng. Symp. 13: 331–350.

    CAS  Google Scholar 

  27. Geider, R. J. and B. A. Osborne (1992) Light utilization and optical properties of algae. pp. 122–155. In: R. J. Geider and B. A. Osborne (eds.).Algal Photosynthesis (Current Physiology). Chapman and Hall, New York, NY, USA.

    Google Scholar 

  28. Geider, R. J. and B. A. Osborne (1987) Light absorption by a marine diatom: experimental observation and theoretical calculations of the package effect in a smallThalassiosira species.Mar. Biol. 96: 299–308.

    Article  Google Scholar 

  29. Kok, B., B. Forbush, and M. McGloin (1970) Cooperation of charges in photosynthetic O2 evolution—I. A linear four step mechanism.Photochem. Photobiol 11: 457–475.

    Article  CAS  Google Scholar 

  30. Kok, B. (1953) Experiments on photosynthesis byChlorella in flashing light. pp. 63–75. In: J. S. Burlew (ed.).Algal Culture from Laboratory to Pilot Plant). Carnegie Institution of Washington Publication, Washington, DC, USA.

    Google Scholar 

  31. Kok, B. (1956) Photosynthesis in flashing light.Acta 21: 245–258.

    CAS  Google Scholar 

  32. Phillips, J. N. and J. Myers (1954) Growth rate ofChlorella in flashing light.Plant Physiol. 29: 152–161.

    Article  CAS  Google Scholar 

  33. Weller, S. and J. Franck (1941) Photosynthesis in flashing light.J. Phys. Chem. 45: 1359–1373.

    Article  CAS  Google Scholar 

  34. Park, K.-H., D.-I. Kim, and C.-G. Lee (2000) Effect of flashing light on oxygen production rates in high-density algal cultures.J. Microbiol. Biotechnol. 10: 817–822.

    Google Scholar 

  35. Park, K.-H. and C.-G. Lee (2000) Optimization of algal photobioreactors using flashing lights.Biotechnol. Bioprocess Eng. 5: 186–190.

    Article  CAS  Google Scholar 

  36. Fredrickson, A. G. and H. M. Tsuchiya (1970)Utilization of the Effects of Intermittent Illumination on Photosynthetic microorganisms. Center for Agricultural Publication and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  37. Lee, C.-G. and B. O. Palsson (1995) Light-emitting diodebased algal photobioreactor with external gas exchange.J. Ferment. Bioeng. 79: 257–263.

    Article  CAS  Google Scholar 

  38. Lee, C.-G. and B. O. Palsson (1995) Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors.Biotechnol. Lett. 17: 1149–1154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, NJ., Lee, CG. A theoretical consideration on oxygen production rate in microalgal cultures. Biotechnol. Bioprocess Eng. 6, 352–358 (2001). https://doi.org/10.1007/BF02933005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933005

Keywords

Navigation