Skip to main content
Log in

Expression and possible role of stress-responsive proteins inAnabaena

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Nitrogen-fixingAnabaena strains offer appropriate model systems to study the cellular and molecular responses to agriculturally important environmental stresses, such as salinity, drought and temperature upshift. Sensitivity to stresses results primarily from reduced synthesis of vital cellular proteins such as phycocyanin and dinitrogenase reductase leading to impairment of photosynthesis and nitrogen fixation. Exposure to stresses induces the synthesis of a large number of general stress proteins and a few unique stress-specific proteins through transcriptional activation of stress-responsive genes. Using a subtractive RNA hybridization approach a large number of osmoresponsive genes have been cloned fromAnabaena torulosa. The expression of general stress proteins has been shown to form the basis of adaptation and cross-protection against various stresses inAnabaena. Prominent among such proteins are the K+-scavenging enzyme, KdpATPase, and the molecular chaperone, GroEL. Unlike heterotrophs, carbon starvation does not appear to evoke a global stress response inAnabaena. Supplementation of combined nitrogen or K+ improves inherent tolerance ofAnabaena strains to many environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf K and Epstein W 1993 Kdp-ATPase ofEscherichia coli;Cell Physiol. Biochem. 4 160–168

    Article  Google Scholar 

  • Apte S K 1992 Molecular biology of cyanobacterial nitrogen fixation: recent advances;Indian J. Microbiol. 32 103–126

    Google Scholar 

  • Apte S K 1993 Cyanobacterial nitrogen fixation; molecular genetic aspects;Proc. Indian Natl. Sci. Acad. B59 367–386

    CAS  Google Scholar 

  • Apte S K and Alahari A 1994 Role of alkali cations (K+ and Na+) in cyanobacterial nitrogen fixation and adaptation to salinity and osmotic stress;Indian J. Biochem. Biophys. 31 267–279

    CAS  PubMed  Google Scholar 

  • Apte S K and Bhagwat A A 1989 Salinity stress induced proteins in two nitrogen-fixingAnabaena strains differentially tolerant to salt;J. Bacteriol. 171 909–915

    Article  CAS  Google Scholar 

  • Apte S K, Fernandes T A, Iyer V and Alahari A 1997 Molecular basis of tolerance to salinity and drought stresses in photosynthetic nitrogen-fixing cyanobacteria; inPlant molecular biology (eds) K K Tewari and G S Singhal (New Delhi: Narosa Publishing House) pp 258–268

    Google Scholar 

  • Apte S K and Haselkorn R 1990 Cloning of salinity stress induced genes from salt tolerant nitrogen-fixing cyanobacteriumAnabaena torulosa;Plant Mol. Biol. 15, 723–733

    Article  CAS  Google Scholar 

  • Apte S K and Nareshkumar G 1996 A model for cell type-specific differential gene expression during heterocyst development and the constitution of aerobic nitrogen fixation ability inAnabaena sp. strain PCC 7120;J. Biosci. 21 397–411

    Article  CAS  Google Scholar 

  • Apte S K, Reddy B R and Thomas J 1987 Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria;Appl. Env. Microbiol. 53 1934–1939

    CAS  Google Scholar 

  • Apte S K and Thomas J 1980 Sodium is required for nitrogenase activity in cyanobacteria;Curr. Microbiol. 3 291–293

    Article  CAS  Google Scholar 

  • Apte S K and Thomas J 1986 Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria;Eur. J. Biochem. 154 395–401

    Article  CAS  Google Scholar 

  • Apte S K and Thomas J 1997 Possible reclamation of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria;Plant Soil 189 205–211

    Article  CAS  Google Scholar 

  • Bhagwat A A and Apte S K 1989 Comparative analysis of proteins induced by heat-shock, salinity and osmotic stress in the nitrogen-fixing cyanobacteriumAnabaena sp. strain L-31;J. Bacteriol. 171 5187–5189

    Article  CAS  Google Scholar 

  • Bohnert H J and Jensen R G 1996 Strategies for engineering water stress tolerance in plants;Trends Biotechnol. 14 89–97

    Article  CAS  Google Scholar 

  • Borowitzka L J, Demmerle S, Mackay M A and Norton S 1980 Carbon-13 nuclear magnetic resonance study of osmoregulation in blue-green algae;Science 210 650–651

    Article  CAS  Google Scholar 

  • Boyer J S 1972 Plant productivity and environment;Science 218 443–448

    Article  Google Scholar 

  • Brock T D 1973 Evolutionary and ecological aspects of cyanophytes; inThe biology of blue-green algae (eds) N G Carr and B A Whitton (Oxford: Blackwell) pp 487–500

    Google Scholar 

  • Buchanan-Wollaston V, Cannon M C, Beynon J L and Cannon F C 1981 Role ofnifA gene product in the regulation ofnif expression inKlebsiella pneumoniae;Nature (London) 294 776–778

    Article  CAS  Google Scholar 

  • Castenholz R W 1988 Culturing of cyanobacteria;Methods Enzymol. 167 68–93

    Article  CAS  Google Scholar 

  • Close T and Lammers P J 1993 An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins;Plant Physiol. (Bethesda) 101 773–779

    Article  CAS  Google Scholar 

  • Collins J J and Brill W J 1985 Control ofKlebsiella pneumoniae nif mRNA synthesis;J. Bacteriol. 162 1186–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csonka L N and Hanson A D 1991 Prokaryotic osmoregulation: genetics and physiology;Annu. Rev. Microbiol. 45 569–606

    Article  CAS  Google Scholar 

  • Fernandes T A, Iyer V and Apte S K 1993 Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses;Appl. Environ. Microbiol. 59 899–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H M, Babst M, Kaspar T, Acuna G, Arigoni F and Hennecke H 1993 One member of agroESL-like chaperonin multigene family inBradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes;EMBO J. 12 2901–2912

    Article  CAS  Google Scholar 

  • Hecker M Schumann W and Volker U 1996 Heat-shock and general stress response inBacillus subtilis;Mol. Microbiol. 19 417–428

    Article  CAS  Google Scholar 

  • Hengge-Aronis R 1993 Survival of hunger and stress: the role ofrpoS in early stationary phase gene regulation inE. coli;Cell 72 165–168

    Article  CAS  Google Scholar 

  • Iyer V, Fernandes T A and Apte S K 1994 A role of osmotic stress-induced proteins in the osmotolerance of a nitrogen-fixing cyanobacterium,Anabaena sp. strain L-31;J. Bacteriol. 176 5868–5870

    Article  CAS  Google Scholar 

  • Meury J and Kohiyama M 1993 Role of heat-shock protein DnaK in osmotic adaptation ofEscherichia coli;J. Bacteriol. 173 4404–4410

    Article  Google Scholar 

  • Morimoto R I, Sarges K D and Abravaya K 1992 Transcriptional regulation of heat-shock genes;J. Biol. Chem. 267 21987–21990

    CAS  PubMed  Google Scholar 

  • Nystrom T and Neidhardt F C 1993 Isolation and properties of a mutant ofEscherichia coli with an insertional inactivation of theuspA gene, which encodes a universal protein;J. Bacteriol. 175 3949–3956

    Article  CAS  Google Scholar 

  • Palleros D R, Reid K L, Shi L, Welch W J and Fink A L 1993 ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis;Nature (London) 365 664–666

    Article  CAS  Google Scholar 

  • Peat A, Powell N and Potts M 1988 Ultrastructural analysis of the rehydration of desiccatedNostoc commune HUN (cyanobacteria) with particular reference to the immunolabelling of NifH;Protoplasma 146 72–80

    Article  Google Scholar 

  • Reed R H, Richardson D L, Warr S R C and Stewart W D P 1984 Carbohydrate accumulation and osmotic stress in cyanobacteria;J. Gen. Microbiol. 130 1–4

    CAS  Google Scholar 

  • Reed R H and Stewart W D P 1985 Evidence for turgor sensitive K+ influx in cyanobacteriaAnabaena variabilis ATCC 29413 andSynechocystis PCC 6714;Biochim. Biophys. Acta 812 155–162

    Article  CAS  Google Scholar 

  • Reddy B R, Apte S K and Thomas J 1989 Enhancement of cyanobacterial salt tolerance by combined nitrogen;Plant Physiol. (Bethesda) 89 204–210

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Detection and analysis of proteins expressed from cloned genes; inMolecular cloning: A laboratory manual (New York: Cold Spring Harbor Laboratory Press) 2nd edition, pp 18.60–18.74

    Google Scholar 

  • Serrano R and Gaxiola R 1994 Microbial models and salt stress tolerance in plants;Crit. Rev. Plant Sci. 13 121–138

    Article  CAS  Google Scholar 

  • Singh R N 1950 Reclamation of ‘usar’ lands in India through blue-green algae;Nature (London),165 325–326

    Article  Google Scholar 

  • Stacey G, Van Baalen C and Tabita 1977 Isolation and characterisation of a marineAnabaena sp. capable of rapid growth on molecular nitrogen;Arch. Microbiol. 114, 197–201

    Article  CAS  Google Scholar 

  • Thomas J 1970 Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga;Nature (London) 228, 181–183

    Article  CAS  Google Scholar 

  • Volker U, Engelmann S, Maul, Riethdorf S, Volker A, Schmid R, Mach H and Hecker M 1994 Analysis of the induction of general stress proteins ofBacillus subtilis;Microbiology 140 741–752

    Article  Google Scholar 

  • Wood N B and Haselkorn R 1980 Control of phycobilin proteolysis and heterocyst differentiation inAnabaena;J. Bacteriol. 141 1375–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T D and Wu R 1996 Expression of a late embryogenesis abundant protein gene,HVAI, from barley confers tolerance to water deficit and salt stress in transgenic rice;Plant Physiol. 110 249–257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apte, S.K., Fernandes, T., Badran, H. et al. Expression and possible role of stress-responsive proteins inAnabaena . J. Biosci. 23, 399–406 (1998). https://doi.org/10.1007/BF02936133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936133

Keywords

Navigation