Skip to main content
Log in

Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Steam-heating of aspen wood chips improved the enzymatic digestibility of the cellulose. Scaling up the reaction vessel from 2 to 60 L had virtually no influence on the chemical composition and the accessibility of the lignocellulosic substrate. Over 85% of the cellulose could be hydrolyzed to glucose when an 8% substrate concentration was used. The residual content of alkali-insoluble lignin appeared to control the digestibility of the cellulose. Increased delignification either by prolonged steaming, oxidative posttreatment, or SO2 catalysis improved the accessibility of the cellulose. The use of SO2 as a catalyst also increased the recovery yield of the wood after steam-heating, with more than 70% of the original xylan recovered as monomeric xylose. Conversion yields of above 90% were achieved at low levels of filter paper activity after a relatively short incubation time. Removal of alkali-soluble lignin did not influence digestibility when the enzyme concentration was based on the cellulose content of the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SHA-WI:

water-insoluble fraction of steam-heated aspen wood

SHA-WIA:

water-and-alkali-insoluble fraction of steam-heated aspen wood

SHA-WIA/H2O2:

water-and-alkali-insoluble fraction of steam-heated aspenwood posttreated with hydrogen peroxide

References

  1. Sudo, K., Shimizu, K., Ishii, T., Fujii, T., and Nagasawa, S. (1986),Holzforschung 40, 339.

    Article  CAS  Google Scholar 

  2. Dekker, R. F. H., Karageorge, H., and Wallis, A. F. A. (1987),Biocatalysis 1,47.

    Article  CAS  Google Scholar 

  3. Biermann, C. J., Schultz, T. P., and McGinnis, G. D. (1984),J. Wood Chem. Technol. 4(1), 111.

    Article  CAS  Google Scholar 

  4. Lynd, L. R. and Grethlein, H. E. (1987),Biotechnol. Bioeng. 29, 92.

    Article  CAS  Google Scholar 

  5. Lee, Y.-H., Robinson, C. W., and Moo-Young, M. (1987),Biotechnol. Bioeng. 29, 572.

    Article  CAS  Google Scholar 

  6. Hoermeyer, H. F., Bonn, G., Kim, D. W., and Bobleter, O. (1987),J. Wood Chem. Technol. 7(2), 269.

    Article  CAS  Google Scholar 

  7. Saddler, J. N. and Brownell, H. H. (1982),Proc. Royal Soc. Canada, Int. Symp. on Ethanol from Biomass, Duckworth, H. E., ed., Winnipeg, Canada, p. 206.

    Google Scholar 

  8. Schwald, W., Chan, M., Brownell, H. H., and Saddler, J. N. (1988),Proc. FEMS Symp. No. 43, Biochemistry and Genetics of Cellulose Degradation, Aubert, J. P., Béguin, P., and Millet, J., eds., Academic, London, p. 303.

    Google Scholar 

  9. Saddler, J. N. (1986),Microb. Sci. 3(3), 84.

    CAS  Google Scholar 

  10. Klesov, A. A. and Sinitsyn, A. P. (1981),Bioorganicheskaya Khimiya 7(12), 1801.

    CAS  Google Scholar 

  11. Cowling, E. B. and Kirk, T. K. (1976),Biotechnol. Bioeng. Symp., No. 6, 95.

  12. Schurz, J. (1986),Holzforschung,40, 225.

    CAS  Google Scholar 

  13. Rivers, D. B. and Emert, G. H. (1988),Biotechnol. Bioeng. 31, 278.

    Article  CAS  Google Scholar 

  14. Fan, L. T., Lee, Y.-H., and Beardmore, D. H. (1981),Biotechnol. Bioeng. 23, 419.

    Article  CAS  Google Scholar 

  15. Grethlein, H. G. (1985),Bio/Technol. 3, 155.

    Article  CAS  Google Scholar 

  16. Clark, T. A. and Mackie, K. L. (1987),J. Wood Chem. Technol. 7(3), 373.

    Article  CAS  Google Scholar 

  17. Wong, K. K. Y., Deverell, K. F., Mackie, K. L., Clark, T. A., and Donaldson, L. A. (1988),Biotechnol. Bioeng. 31, 447.

    Article  CAS  Google Scholar 

  18. Brownell, H. H. and Saddler, J. N. (1987),Biotechnol. Bioeng. 29, 228.

    Article  CAS  Google Scholar 

  19. Gould, J. M. (1984),Biotechnol. Bioeng. 26, 46.

    Article  CAS  Google Scholar 

  20. Irick, T., West, K., Brownell, H. H., Schwald, W., and Saddler, J. N. (1988),Appl. Biochem. Biotechnol. 17, 137.

    Article  CAS  Google Scholar 

  21. Schwald, W. and Saddler, J. N. (1988),Enzyme Microb. Technol. 10 37.

    Article  CAS  Google Scholar 

  22. Schwald, W., Chan, M., Breuil, C, and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 28, 398.

    Article  CAS  Google Scholar 

  23. Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986),Biotechnol. Bioeng. 28, 792.

    Article  CAS  Google Scholar 

  24. Chum, H. L., Johnson, D. K., Black, S., Baker, J., Grohmann, K., Sarkanen, K. V., Wallace, K., and Schroeder, H. A. (1988),Biotechnol. Bioeng. 31, 643.

    Article  CAS  Google Scholar 

  25. Nguyen, Q., Douglas, L. J., Schuler, A. T., and Saddler, J. N. submitted for publication.

  26. Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985),J. Wood Chem. Technol. 5(3), 405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwald, W., Breuil, C., Brownell, H.H. et al. Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations. Appl Biochem Biotechnol 20, 29–44 (1989). https://doi.org/10.1007/BF02936471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936471

Index Entries

Navigation