Skip to main content
Log in

Photobioreactor engineering: Design and performance

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This review summarizes the recent advances in high-density algal cultures in the field of algal biotechnology. Photobioreactor engineering for economical and effective utilization of algae and its products has made impressive and promising progress. Bioprocess engineers have expedited the design and the operation of algal cultivation systems. Many of them in use today are open systems due to cost considerations, and closed photobioreactors have recently attracted a considerable attention for the production of valuable biochemicals or for special applications. For high-density cultures, the optimization of environmental factors in the photobioreactors have been explored, including light delivery, CO2 and O2 gas transfer, medium supply, mixing and temperature. It is expected that further advanced photobioreactor engineering will enable the commercialization of noble algal products within the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metting, B. and J. W. Pyne (1986) Biologically active compounds from microalgae.Enzyme Microb. Technol. 8: 386–394.

    CAS  Google Scholar 

  2. Glombitza, K. W. and M. Koch (1989) Secondary metabolites of pharmaceutical potential. pp. 161–238. In: R. C. Cresswell, T. A. V. Rees, and H. Shah (eds.).Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, Harlow, UK.

    Google Scholar 

  3. Cannell, R. J. P. (1993) Algae as a source of biologically active products.Pestic. Sci. 39: 147–153.

    CAS  Google Scholar 

  4. Javanmardian, M. and B. O. Palsson (1992) Design and operation of an algal photobioreactor system.Adv. Space Res. 12: 231–235.

    CAS  Google Scholar 

  5. Lee, C.-G. and B. O. Palsson (1995) Light emitting diode-based algal photobioreactor with external gas exchange.J. Ferment. Bioeng., 79: 257–263.

    CAS  Google Scholar 

  6. Borowitzka, M. A. and L. J. Borowitzka (1988)Microalgal Biotechnology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  7. Lee, K. and C.-G. Lee (2002) Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources.J. Microbiol. Biotechnol., 12: 979–985.

    CAS  Google Scholar 

  8. Eroglu, E., U. Gunduz, M. Yucel, L. Turker, and I. Eroglu (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source.Int. J. Hydrogen Energy 29: 163–171.

    CAS  Google Scholar 

  9. Kuyucak, N. and B. Volesky (1990) Biosorption by algal biomass, pp. 173–198. In: B. Volesky (ed.).Biosorption of Heavy Metals. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  10. Wilde, E. W. and J. R. Benemann (1993) Bioremmoval of heavy metals by the use of microalgae.Biotechnol. Adv. 11: 781–812.

    CAS  Google Scholar 

  11. Karube, I., T. Takeuchi, and D. J. Barnes (1992) Biological reduction of CO2 emissions.Adv. Biochem. Eng./Biotechnol. 46: 63–79.

    CAS  Google Scholar 

  12. Keffer, J. E. and G. T. Kleinheinz (2002) Use ofChlorella vulgaris for CO2 mitigation in a photobioreactor.J. Ind. Microbiol. Biotechnol. 29: 275–280.

    CAS  Google Scholar 

  13. Negoro, M., A. Hamasaki, Y. Ikuka, T. Makita, K. Hirayama, and S. Suzuki (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler.Appl. Biochem. Biotechnol. 39/40: 643–653.

    Google Scholar 

  14. Zhang, K., N. Kurano, and S. Miyachi (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor.Bioprocess Biosys. Eng. 25: 97–101.

    CAS  Google Scholar 

  15. Olaizola, M. (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of micro-algal cultures.Biotechnol. Bioprocess Eng. 8: 360–367.

    CAS  Google Scholar 

  16. Lee, J.-S. and J.-P. Lee (2003) Review of advances in biological CO2 mitigation technology.Biotechnol. Bioprocess Eng. 8: 354–359.

    CAS  Google Scholar 

  17. Akkerman, I., M. Janssen, J. Rocha, and R. H. Wijffels (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design.Int. J. Hydrogen Energy 27: 1195–1208.

    CAS  Google Scholar 

  18. Benemann, J. (1996) Hydrogen biotechnology: Progress and prospects.Nature Biotechnol. 14: 1101–1103.

    CAS  Google Scholar 

  19. Hallenbeck, P. C. and J. R. Benemann (2002) Biological hydrogen production: fundamentals and limiting processes.Int. J. Hydrogen Energy 27: 1185–1193.

    CAS  Google Scholar 

  20. Melis, A. (2002) Green alga hydrogen production: progress, challenges and prospects.Int. J. Hydrogen Energy 27: 1217–1228.

    CAS  Google Scholar 

  21. Benemann, J. R., D. M. Tillett, and J. C. Weissmann (1987) Microalgae biotechnology.Trends Biotechnol. 5: 47–53.

    CAS  Google Scholar 

  22. Gummert, F., M.-E. Meffert, and H. Stratmann (1953) Non-sterile large-scale culture ofChlorella in greenhouse and open air. pp. 166–176. In: Burlew, J. S. (ed.).Algal Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC, USA.

    Google Scholar 

  23. Cook, P. M. (1951) Chemical engineering problems in large scale culture of algae.Ind. Eng. Chem. 43: 2385–2389.

    CAS  Google Scholar 

  24. Terry, K. L. and L. P. Raymond (1985) System design for the autotrophic production of microalgae.Enzyme Microb. Technol. 7: 474–487.

    Google Scholar 

  25. Oswald, W. J. (1988)Large-scale Algal Culture Systems (Engineering Aspects). Cambridge University Press, Cambridge, UK.

    Google Scholar 

  26. Chaumont, D. (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture.J. Appl. Phycol. 5: 593–604.

    Google Scholar 

  27. Avron, M. (1989) The efficiency of biosolar energy conversion by aquatic photosynthetic organisms, pp. 385–387. In: Y. Cohen and E. Rosenberg (eds.).Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  28. Richmond, A. (1986) Outdoor mass cultures of microalgae. pp. 285–330. In: A. Richmond (ed.).Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  29. Lee, Y.-K. (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend.Trends Biotechnol. 5: 186–189.

    Google Scholar 

  30. Pirt, S. J., Y.-K. Lee, M. R. Walach, M. W. Pirt, H. H. M. Balyuzi, and M. J. Bazin (1983) A tubular photobioreactor for photosynthetic production of biomass from CO2: Design and performance.J. Chem. Tech. Biotechnol. 33B: 35–58.

    CAS  Google Scholar 

  31. Ratchford, I. A. J. and H. J. Fallowfield (1992) Performance of a flat plate, air-lift reactor for the growth of high biomass algal cultures.J. Appl. Phycol. 4: 1–9.

    Google Scholar 

  32. Tredici, M. R. and R. Materassi (1992) From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms.J. Appl. Phycol. 4: 221–231.

    Google Scholar 

  33. Olaizola, M. (2000) Commercial production of astaxanthin fromHaematococcus pluvialis using 25,000-liter outdoor photobioreactors.J. Appl. Phycol. 12: 499–506.

    CAS  Google Scholar 

  34. Lee, Y.-K. and C.-S. Low (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor.Biotechnol. Bioeng. 40: 1119–1122.

    CAS  Google Scholar 

  35. Lee, Y.-K. and C.-S. Low (1993) Productivity of outdoor algal cultures in unstable weather conditions.Biotechnol. Bioeng. 41: 1003–1006.

    CAS  Google Scholar 

  36. Takano, H., R. Takei, E. Manabe, J. G. Burgess, M. Hirano, and T. Matsunaga (1995) Increased coccolith production byEmiliania huxleyi cultures enriched with dissolved inorganic carbon.Appl. Microbiol. Biotechnol. 43: 460–465.

    CAS  Google Scholar 

  37. Ogbonna, J. C., H. Yada, H. Masui, and H. Tanaka (1996) A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells.J. Ferment. Bioeng. 82: 61–67.

    CAS  Google Scholar 

  38. Mori, K. (1985) Photoautotrophic bioreactor using solar rays condensed by fresnel lenses and transmitted through optical fibers.Biotechnol. Bioeng. Symp. 15: 331–345.

    Google Scholar 

  39. Javanmardian, M. and B. O. Palsson (1991) High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system.Biotechnol. Bioeng. 38: 1182–1189.

    CAS  Google Scholar 

  40. Lee, C.-G. and B. O. Palsson (1994) High-density algal photobioreactors using light-emitting diodes.Biotechnol. Bioeng. 44: 1161–1167.

    CAS  Google Scholar 

  41. Matthijs, H. C. P., H. Balke, U. M. van Hes, B. M. A. Kroon, L. R. Mur, and R. A. Binot (1996) Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa).Biotechnol. Bioeng. 50: 98–107.

    CAS  Google Scholar 

  42. Hirata, S., M. Hayashitani, M. Taya, and S. Tone (1996) Carbon dioxide fixation in batch culture ofChlorella sp. using a photobioreactor with a sunlight-collection device.J. Ferment. Bioeng. 81: 470–472.

    CAS  Google Scholar 

  43. Vernerey, A., J. Albiol, C. Lasseur, and F. Godia (2001) Scale-up and design of a pilot-plant photobioreactor for the continuous cultures ofSpirulina platensis.Biotechnol. Prog. 17: 431–438.

    CAS  Google Scholar 

  44. Prokop, A., M. F. Quinn, M. Fekri, M. Murad, and S. A. Ahmed (1984) Spectral shifting by dyes to enhance, algae growth.Biotechnol. Bioeng. 26: 1313–1322.

    CAS  Google Scholar 

  45. Simmer, J., V. Tichy, and J. Doucha (1994) What kind of lamp for the cultivation of algae?J. Appl. Phycol. 6: 309–313.

    Google Scholar 

  46. Geider, R. J. and B. A. Osborne (1992) Light Sources and Related Accessories. pp. 93–106. In: R. J. Geider and B. A. Osborne (eds.).Algal Photosynthesis. Chapman & Hall, Inc., New York, NY, USA.

    Google Scholar 

  47. Pulz, O. and K. Scheibenbogen (1998) Photobioreactors: design and performance with respect to light energy input. pp. 123–152. In: T. Scheper (ed.).Bioprocess and Algae Reactor Technology, Apoptosis. Vol 59. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  48. Richardson, K., J. Beardall, and J. A. Raven (1983) Adaptation of unicellular algae to irradiance: An analysis of strategies.New Phytol. 93: 157–191.

    Google Scholar 

  49. Camacho Rubio, F., F. Garcia Camacho, J. M. Fernandez Sevilla, Y. Chisti, and E. Molina Grima (2003) A mechanistic model of photosynthesis in microalgae.Biotechnol. Bioeng. 81: 459–473.

    CAS  Google Scholar 

  50. Powels, S. B. (1984) Photoinhibition of photosynthesis induced by visible light.Ann. Rev. Plant. Physiol. 35: 15–44.

    Google Scholar 

  51. Reuter, W. and C. Muller (1993) Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO2.J. Photochem. Photobiol. B: Biol. 21: 3–27.

    CAS  Google Scholar 

  52. Lee, C.-G. (1999) Calculation of light penetration depth in photobioreactors.Biotechnol. Bioprocess Eng. 4: 78–81.

    CAS  Google Scholar 

  53. Suh, I. S. and S. B. Lee (2003) A light distribution model for an internally radiating photobioreactor.Biotechnol. Bioeng. 82: 180–189.

    CAS  Google Scholar 

  54. Park, K.-H., D.-I. Kim, and C.-G. Lee (2000) Effect of flashing light on oxygen production rates in high-density algal cultures.J. Microbiol. Biotechnol. 10: 817–822.

    Google Scholar 

  55. Degen, J., A. Uebele, A. Retze, U. Schmid-Staiger, and W. Trosch (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect.J. Biotechnol. 92: 89–94.

    CAS  Google Scholar 

  56. Terry, K. L. (1986) Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate.Biotechnol. Bioeng. 28: 988–995.

    CAS  Google Scholar 

  57. Park, K.-H. and C.-G. Lee (2001) Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density.Biotechnol. Bioprocess Eng. 6: 189–193.

    CAS  Google Scholar 

  58. Eriksen, N. T., T. Geest, and J. J. L. Iversen (1996) Phototrophic growth in the lumostat: a photo-bioreactor with on-line optimization of light intensity.J. Appl. Phycol. 8: 345–352.

    CAS  Google Scholar 

  59. Hata, J.-I., Y. Toyo-Oka, M. Taya, and S. Tone (1997) A strategy for control of light intensity in suspension culture of photoautotrophic liverwort cells,Marchantia paleacea var.diptera.J. Chem. Eng. Japan 30: 315–320.

    CAS  Google Scholar 

  60. Suh, I. S. and S. B. Lee (2001) Cultivation of cyanobacterium in an internally radiating air-lift photobioreactor.J. Appl. Phycol. 13: 381–388.

    Google Scholar 

  61. Choi, S.-L., I. S. Suh, and C.-G. Lee (2003) Lumostatic operation of bubble column photobioreactors forHaematococcus pluvialis cultures using a specific light uptake rate as a control parameter.Enzyme Microb. Technol. 33: 403–409.

    CAS  Google Scholar 

  62. Lee, Y.-K. and H.-S. Tay (1991) High CO2 partial pressure depresses productivity and bioenergetic growth yield ofChlorella pyrenoidosa culture.Appl. Phycol. 3: 95–101.

    Google Scholar 

  63. Kodama, M., H. Ikemoto, and S. Miyachi (1993) A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture.J. Mar. Biotechnol. 1: 21–25.

    Google Scholar 

  64. Aiba, S. (1982) Growth kinetics of photosynthetic microorganisms. p. 85–156. In: Fiechter, A. (ed.).Microbial Reactions vol 23. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  65. Lee, Y.-K. and S.-Y. Ding (1995) Effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in chemostat cultures ofHaematococcus lacustris (Chlorophyta).J. Phycol. 31: 922–924.

    CAS  Google Scholar 

  66. Borowitzka, M. A., J. M. Huisman, and A. Osborn (1991) Culture of the astaxanthin-producing green algaHaematococcus pluvialis: I. Effects of nutrients on growth and cell type.J. Appl. Phycol. 3: 295–304.

    CAS  Google Scholar 

  67. Gong, X. and F. Chen (1998) Influence of medium components on astaxanthin content and production ofHaematococcus pluvialis.Process Biochem 33: 385–391.

    CAS  Google Scholar 

  68. Mandalam, R. K. and B. O. Palsson (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-densityChlorella vulgaris cultures.Biotechnol. Bioeng. 59: 605–611.

    CAS  Google Scholar 

  69. Lee, C.-G. and B. O. Palsson (1995) Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors.Biotechnol. Lett. 17: 1149–1154.

    CAS  Google Scholar 

  70. Gudin, C. and D. Chaumont (1991) Cell fragility: The key problem of microalgae mass production in closed photobioreactors.Bioresource Technol. 38: 145–151.

    Google Scholar 

  71. Bosca, C., A. Dauta, and O. Marvalin (1991) Intensive outdoor algal cultures: How mixing enhances the photosynthetic production rate.Bioresource Technol. 38: 185–188.

    Google Scholar 

  72. Garcia Camacho, F., A. Contreras Gomez, T. Mazzuca Sobezuk, and E. Molina Grima (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures ofPorphyridium cruentum.Process Biochem. 35: 1045–1050.

    Google Scholar 

  73. Silva, H. J., T. Cortinas, and R. J. Ertola (1987) Effect of hydrodynamic stress onDunaliella growth.J. Chem. Tech. Biotechnol. 40: 41–49.

    Google Scholar 

  74. Garcia Camacho, F., E. Molina Grima, A. Sanchez Miron, V. Gonzalez Pascual, and Y. Chisti (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress.Enzyme Microb. Technol. 29: 602–610.

    Google Scholar 

  75. Payer, H. D., Y. Chiemvichak, K. Hosakul, C. Kongpanichkul, L. Kraidej, M. Nguitragul, S. Reungmanipytoon, and P. Buri (1980) Temperature as an important climate factor during mass production of microscopic algae. pp. 389–399. In: G. Shelef and C. J. Soeder (eds.).Algae Biomass. Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands.

    Google Scholar 

  76. Torzillo, G., A. Sacchi, and R. Materassi (1991) Temperature as an important factor affecting productivity and night biomass loss inSpirulina platensis grown outdoors in tubular photobioractors.Bioresource Technol. 38: 95–100.

    Google Scholar 

  77. Thompson, P. A., M.-X. Guo, and P. J. Harrison (1992) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton.J. Phycol. 28: 481–488.

    CAS  Google Scholar 

  78. Raven, J. A. and R. J. Geider (1988) Temperature and algal growth.New Phytol. 110: 441–461.

    CAS  Google Scholar 

  79. Davison, I. R. (1991) Environmental effects on algal photosynthesis: Temperature.J. Phycol. 27: 2–8.

    Google Scholar 

  80. Coleman, J. R. and B. Colman (1981) Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH.Plant. Physiol. 67: 917–921.

    Article  CAS  Google Scholar 

  81. Lee, Y.-K. and S. J. Pirt (1984) CO2 absorption rate in an algal culture: Effect of pH.J. Chem. Tech. Biotechnol. 34B: 28–32.

    Google Scholar 

  82. Falkner, G. and F. Horner (1976) pH Changes in the Cytoplasm of the blue-green algaAnacystis nidulans caused by light-dependent proton flux into the thylakoid space.Plant Physiol. 58: 717–718.

    CAS  Google Scholar 

  83. Yegneswaran, P. K., M. R. Gray, and B. G. Thompson (1990) Kinetics of CO2 hydration in fermentors: pH and pressure effects.Biotechnol. Bioeng. 36: 92–96.

    CAS  Google Scholar 

  84. Cogne, G., C. Lasseur, J.-F. Cornet, C.-G. Dussap, and J.-B. Gros (2001) Growth monitoring of a photosynthetic microorganism (Spirulina platensis) by pressure measurement.Biotechnol. Lett. 23: 1309–1314.

    CAS  Google Scholar 

  85. Cohen, Z. (1986) Products from microalgae, pp. 421–454. In: A. Richmond (ed.).Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  86. Ben-Amotz, A. and M. Avron (1990) The biotechnology of cultivating the halotolerant algaDunaliella.Trends Biotechnol. 8: 121–126.

    CAS  Google Scholar 

  87. Avron, M. and A. Ben-Amotz (1992)Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton, USA.

    Google Scholar 

  88. Wada, H., Z. Gombos, and N. Murata (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation.Nature 347: 200–203.

    CAS  Google Scholar 

  89. Deshnium, P., D. A. Los, H. Hayashi, L. Mustardy, and N. Murata (1995) Transformation ofSynechococcus with a gene for choline oxidase enhances tolerance to salt stress.Plant Mol. Biol. 29: 897–907.

    CAS  Google Scholar 

  90. Melis, A., J. Neidhardt, and J. R. Benemann (1999)Dunaliela salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells.J. Appl. Phycol. 10: 515–525.

    Google Scholar 

  91. Nakajima, Y. and R. Ueda (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity.J. Appl. Phycol. 12: 285–290.

    CAS  Google Scholar 

  92. Zaslavskaia, L. A., J. C. Lippmeier, C. Shih, D. Ehrhardt, A. R. Grossman, and K. E. Apt (2001) Tropical conversion of an obligate photoautotrophic organism through metabolic engineering.Science 292: 2073–2075.

    CAS  Google Scholar 

  93. Davis, E. A., J. Dedrick, J. H. C. Smith, and H. A. Spoehr (1953) Laboratory experiments onChlorella culture at the Carnegie Institution of Washington, p. 105–153. In: Burlew, J. S. (ed.).Algal Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC, USA.

    Google Scholar 

  94. Tamiya, H., K. Shibata, T. Sasa, T. Iwamura, and Y. Morimura (1953) Effect of diurnally intermittent illumination on the growth and some cellular characteristics ofChlorella. pp. 76–84. In: J. S. Burlew (ed.).Algal Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC, USA.

    Google Scholar 

  95. Juttner, F. (1977) Thirty liter tower-type pilot plant for the mass cultivation of light and motion sensitive planktonic algae.Biotechnol. Bioeng. 19: 1679–1687.

    Google Scholar 

  96. Roubicek, R. V., K. H. Patton, K. H. McCorkle, and A. L. Rakow (1986) Cultivation of microalgae in a photobioreactor. pp. 218–221. In: W. R. Barclay and R. P. McIntosh (eds.).Algal Biomass Technologies: An Interdisciplinary Perspective. J. Cramer, Berlin, Germany.

    Google Scholar 

  97. Torzillo, G., B. Pushparaj, F. Bocci, W. Balloni, R. Materassi, and G. Florenzano (1986) Production ofSpirulina biomass in closed photobioreactors.Biomass 11: 61–74.

    Google Scholar 

  98. Driessens, K., J. Liessens, S. Masduki, W. Verstraete, H. Nelis, and A. De Leenheer (1987) Production ofRhodobacter capsulatus ATCC 23782 with short residence time in a continuous flow photobioreactor.Process Biochem. 22: 160–164.

    CAS  Google Scholar 

  99. Miyamoto, K., O. Wable, and J. R. Benemann (1988) Vertical tubular reactor for microalgae cultivation.Biotechnol. Lett. 10: 703–708.

    Google Scholar 

  100. Treat, W. J. and C. R. Engler (1989) Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller.Biotechnol. Bioeng. 34: 1191–1202.

    CAS  Google Scholar 

  101. James, C. M. and A. M. Al-Khars (1990) An intensive continuous culture system using tubular photobioreactors for producing microalgae.Aquaculture 87: 381–393.

    CAS  Google Scholar 

  102. Lee, E. T.-Y. and M. J. Bazin (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures.New Phytol. 116: 331–335.

    Google Scholar 

  103. Takano, H., H. Takeyama, N. Nakamura, K. Sode, J. G. Burgess, E. Manabe, M. Hirano, and T. Matsunaga (1992) CO2 removal by high-density culture of a marine cyanobacteriumSynechococcus sp. using an improved photobioreactor employing light diffusing optical fibers.Appl. Biochem. Biotechnol. 34/35: 449–458.

    Google Scholar 

  104. Yongmanitchai, W. and O. P. Ward (1992) Growth and eicosapentaenoic acid production byPhaeodactylum tricornutum in batch and continuous culture systems.JAOCS 69: 584–590.

    CAS  Google Scholar 

  105. Burgess, J. G., K. Iwamoto, Y. Miura, H. Takano, and T. Matsunaga (1993) An optical fiber photobioreactor for enhanced production of the marine unicellular algaIsochrysis aff.Galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid.Appl. Microbiol. Biotechnol. 39: 456–459.

    CAS  Google Scholar 

  106. Torzillo, G., P. Carlozzi, B. Pushparaj, E. Montaini, and R. Materassi (1993) A two-plane tubular photobioreactor for outdoor culture ofSpirulina.Biotechnol. Bioeng. 42: 891–898.

    CAS  Google Scholar 

  107. Hu, O., H. Guterman, and A. Richmond (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs.Biotechnol. Bioeng. 51: 51–60.

    CAS  Google Scholar 

  108. Hu, O., Y. Zarmi, and A. Richmond (1998) Combined effects of light intensity, light-path and culture density on output rate ofSpirulina platensis (Cyanobacteria).Eur. J. Phycol. 33: 165–171.

    Google Scholar 

  109. Takano, H., H. Furu-Une, J. G. Burgess, E. Manabe, M. Hirano, M. Okazaki, and T. Matsunaga (1993) Production of ultrafine calcite particles by coccolothophorid algae grown in a biosolar reactor supplies with sunlight.Appl. Biochem. Biotechnol. 39/40: 159–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, I.S., Lee, CG. Photobioreactor engineering: Design and performance. Biotechnol. Bioprocess Eng. 8, 313–321 (2003). https://doi.org/10.1007/BF02949274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949274

Keywords

Navigation