Skip to main content
Log in

Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere

  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Intention, Goal, Scope, Background

Following the introduction of automobile catalytic converters the platinum group metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh) gain on increasing interest in environmental research as these metals are emitted with exhaust fumes into the environment. Consequently, elevated PGM levels were found in different environmental matrices uch as road dusts, soils along heavily frequented roads, sediments of urban rivers etc. Accordingly, the effects of increasing PGM emissions on the biosphere are controversially discussed.

Objective

This paper summarizes the present knowledge on the biological availability of PGM to plants and animals. As biological availability is one of the most decisive factors determining the toxicologi-cal potential of xenobiotics, this information is very important to evaluate the possible threat of the noble metals to ecosystems.

Results and Discussion

The availability of soluble as well as particle bound PGM to terrestrial plants was demonstrated in several studies. Experimental investigations revealed uptake of Pt, Pd and Rh also by aquatic plants. Additionally, the biological availability of the noble metals for animals has been verified in experimental studies using soluble metal salts, catalytic converter model substances, sediments of urban rivers, road dust or tunnel dust as metal sources. These studies refer mainly to aquatic animals. Beside of free living organisms, in particular worms parasitizing fish demonstrated a high potential to accumulate PGM. This could be of great interest in respect of biomonitoring purposes. Generally, for plants as well as for animals Pd turns out to be the best available metal among the PGM. Compared to other heavy metals, the biological availability of PGM from road dust to zebra mussels(Dreissena polymorpha) ranged between that of Cd and Pb.

Conclusion

Especially chronic effects of PGM on the biosphere can not be excluded due to (1) their cumulative increase in the environment, (2) their unexpected high biological availability and bioaccumulation and (3) their unknown toxicological and ecotoxicological potential. However, it appears that acute effects on ecosystems due to anthropogenic PGM emission are not likely.

Recommendation and Outlook

Research on environmental PGM contamination of the biosphere, especially the fauna, and on long-term toxiciry of low PGM concentrations is highly appreciated. These studies require very sensitive analytical techniques to determine PGM even in low sample amounts. Research has to be done in particular on reliable determination of (ultra) trace levels of Pd and Rh as the lack of data on these two metals is mainly due to analytical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alt F, Bambauer A, Hoppstock K, Mergler B, TölgG (1993) Platinum traces in airborne paniculate matter. Determination of whole content, particle size distribution and soluble platinum. Fresenius J Anal Chem 346, 693–696

    Article  CAS  Google Scholar 

  • Alt F, Eschnauer HR, Mergler B, Messerschmidt J, TölgG (1997) A contribution to the ecology and enology of platinum. Fresenius J Anal Chem 357, 1013–1019

    Article  CAS  Google Scholar 

  • Alt F, Jereno U, Messerschmidt J, TölgG (1988) The Determination of Platinum in Biotic and Environmental Materials, I. ug/kg- to g/kg-Range. Mikrochim Acta III, 299–304

    Google Scholar 

  • Alt F, Weber G, Messerschmidt J, von Bohlen A, Kastenholz B, GüntherK (2002) Speciation of palladium in phytosystems. First results for endive lettuce. Anal Lett 35, 1349–1359

    Article  CAS  Google Scholar 

  • Artelt S, Creutzenberg O, Kock H, Levsen K, Nachtigall D, HeinrichU, Rühle T, SchlöglR (1999) Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: a model study. Sci Total Environ 228, 219–242

    Article  CAS  Google Scholar 

  • Ballach HJ, Alt F, Messerschmidt J, WittigR (2000) Determinants of the phytotoxicity of platinum. In Zereini F, AltF (eds.) Anthropogenic plati- num-group element emission: Their impact on man and environment, 105–114, Springer Verlag Berlin Heidelberg

    Google Scholar 

  • Ballach HJ, Wittig GR (1996) Reciprocal effects of platinum and lead on the water household of poplar cuttings. Environ Sci & Pollut Res 3, 3–9

    CAS  Google Scholar 

  • Bongers J, Bell JU, Richardson DE (1988) Platinum (II) binding to metallothioneins. J Inorg Biochem 34, 55–62

    Article  CAS  Google Scholar 

  • Bowles JFW, Gize AP, Vaughan DJ, Norris SJ (1995) Organic controls on platinum-group element (PGE) solubility in soils: initial data. Chron Rech Min 520, 65–73

    Google Scholar 

  • Cosden JM, Schijf J, Byrne RH (2003) Fractionation of platinum group elements in aqueous systems: Comparative kinetics of palladium and platinum removal from seawater byUlva lactuca L. Environ Sci Technol 37, 555–560

    Article  CAS  Google Scholar 

  • Djingova R, Kovacheva P, Wagner G, MarkenB (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308, 235–246

    Article  CAS  Google Scholar 

  • Eckhardt JD, SchäferJ (1999) Pflanzenverfügbarkeit, Boden - Pflanze Transfer. In Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 229–237, Springer Verlag Berlin Heidelberg

    Google Scholar 

  • Ely JC, Neal CR, Kulpa CF, Schneegurt MA, Seidler JA, Jain JC (2001) Implications of platinum-group element accumulation along U.S. roads from catalytic-convener attrition. Environ Sci Technol 35, 3816–3822

    Article  CAS  Google Scholar 

  • Farago ME, Parsons PJ (1994) The effects of various platinum metal species on the water plantEichhomia crassipes (MART.) Solms. Chem Spec Bioavail 6,1–12

    CAS  Google Scholar 

  • GebelT (2000) Toxicolgy of platinum, palladium, rhodium, and their compounds. In Alt F, ZereiniF (eds) Anthropogenic Platinum-Group-Element Emissions and their Impact on Man and Environment, 245–255, Springer Verlag Berlin

    Google Scholar 

  • Hees T, Wenclawiak B, Lustig S, Schramel P, Schwarzer M, SchusterM, Verstraete D, Dams R, HelmersE (1998) Distribution of platinum group elements (Pt, Pd, Rh) in environmental and clinical matrices: Composition, analytical techniques and scientific outlook. Status report. Environ Sci & Pollut Res 5, 105–111

    CAS  Google Scholar 

  • HelmersE (1997) Platinum emission rate of automobiles with catalytic converters. Comparison and assessment of results from various approaches. Environ Sci & Pollut Res 4, 100–103

    CAS  Google Scholar 

  • Helmers E, MergelN (1997) Platin in belasteten Gräsern: Anstieg der Emissionen aus PKW-Abgskatalysatoren. Erster Trend aus direkten Umweltmessungen (1992-1995). UWSF - Z Umweltchem Ökotox 9, 147–148

    Article  CAS  Google Scholar 

  • Helmers E, MergelN (1998) Platinum and rhodium in a polluted environment: studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis. Fresenius J Anal Chem 362, 522–528

    Article  CAS  Google Scholar 

  • Helmers E, Schwarzer M, SchusterM (1998) Comparison of palladium and platinum in environmental matrices: palladium pollution by automobile emissions? Environ Sci & Pollut Res 5, 44–50

    Article  CAS  Google Scholar 

  • Hoppstock K, SuresB (2004) Platinum-Group Metals. In: Merian E, Anke M, Ihnat M, StoepplerM (eds). Elements and their compounds in the environment. Wiley-VCH, Weinheim, Germany, 1047–1086

    Chapter  Google Scholar 

  • Jarvis K, Parry SJ, Piper JM (2001) Temporal and spatial studies of autocata-lyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment. Environ Sci Technol 35, 1031–1036

    Article  CAS  Google Scholar 

  • Jensen KH, Rauch S, Morrison GM, LindbergP (2002) Platinum group elements in the feathers of raptors and their prey. Arch Environ Contamin Toxicol 42, 338–347

    Article  CAS  Google Scholar 

  • Johnson Matthey (2002) Platinum 2002. Johnson Matthey Public Limited Company, London

    Google Scholar 

  • Jouhaud R, Biagianti-Risbourg S, VernetG (1999a) Atteintes ultrastructurales intestinales induites par une concentration subléthale de platine chez le téléostéenBrachydanio rerio. Bull Soc Zool Fr 124, 111–116

    Google Scholar 

  • Jouhaud R, Biagianti-Risbourg S, VernetG (1999b) Effets du platine chezBrachydanio rerio (Téléostéen, Cyprinidé). I. Toxicité aiguë; bioaccumu- lation et histopathologie intestinales. J Applied Ichthyol 15, 41- 48

    Article  CAS  Google Scholar 

  • Klueppel K, Jakubowski N, Messerschmidt J, Stuewer D, KlockowD (1998) Speciation of platinum metabolites in plants by size-exclusion chroma- tography and inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 13, 255–262

    Article  CAS  Google Scholar 

  • Klueppel K, Jakubowski N, StuewerD (1999) Platin-Speziation in pflanzlichen Materialien mittels HPLC-ICP-MS. In Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 27–34, Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Laschka D, Nachtwey M, Wäber M, Died C, PeichlL (1999) Biomonitoring verkehrsbedingter Platin-Immissionen, in Zereini F, AltF (eds.) Emissionen von Platinmetallen: Analytik, Umwelt und Gesundheitsrelevanz, 181- 189, Springer Verlag Berlin Heidelberg

    Google Scholar 

  • Lustig S, Michalke B, Beck W, SchramelP (1998b) Platinum speciation with hyphenated techniques: high performance liquid chromatography and capillary electrophoresis on-line coupled to an inductively coupled plasma-mass spectrometer - Application to aqueous extracts from a platinum treated soil. Fresenius J Anal Chem 360, 18–25

    Article  CAS  Google Scholar 

  • Lustig S, SchramelP (2000) Platinum bioaccumulation in plants and overwiew of the situation for palladium and rhodium. In Zereini F, AltF (eds.) Anthropogenic platinum-group element emission: Their impact on man and environment, 95–104, Springer Verlag Berlin Heidelberg

    Google Scholar 

  • Lustig S, Zang S, Beck W, SchramelP(1998a) Dissolution of metallic platinum as water soluble species by naturally occurring complexing agents. Mikrochim Acta 129, 189–194

    CAS  Google Scholar 

  • Lustig S, Zang S, Michalke B, Schramel P, BeckW (1996) Transformation behaviour of different platinum compounds in a clay-like humic soil: speciation investigations. Sci Total Environ 188, 195–204

    Article  CAS  Google Scholar 

  • Lustig S, Zang S, Michalke B, Schramel P, BeckW (1997) Platinum determination in nutrient plants by inductively coupled plasma mass spectrometry with special respect to the hafnium oxide interference. Fresenius J Anal Chem 357, 1157–1163

    Article  CAS  Google Scholar 

  • Messerschmidt J, Alt F, TölgG (1994) Platinum species analysis in plant material by gel permeation chromatography. Anal Chim Acta 291,161–167

    Article  CAS  Google Scholar 

  • Moldovan M, Palacios MA, Gomez MM, Morrison G, RauchS, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, SchramelP, Zischka M, Pettersson C, Wass U, Luna M, Saenz JC, SantamariaJ (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296, 199–208

    Article  CAS  Google Scholar 

  • Moldovan M, Rauch S, Gómez MM, Palacios MA, Morrison GM (2001) Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopodAsellus aquaticus. Water Res 35, 4175–4183

    Article  CAS  Google Scholar 

  • Moore W, Hysell D, Hall L, Campell K, StaraJ (1975a) Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Persp 10, 63–71

    Article  CAS  Google Scholar 

  • Moore W, Malanchuk M, Crocker W, Hysell D, Cohen A, Stara JF (1975b) Whole body retention in rats of different ’191Pt compounds following inhalation exposure. Environ Health Persp 12, 35–39

    Article  CAS  Google Scholar 

  • Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350

    CAS  Google Scholar 

  • Palacois MA, Gómez MM, Moldovan M, Morrison G, Rauch S, McLeod C, Ma R, Laserna J, Lucena P, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Lustig S, Zischka M, Wass U, Stenbom B, Luna M, Saenz JC, Santamaria J, Torrens JM (2000) Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Sci Total Environ 257, 1–15

    Article  Google Scholar 

  • Rauch S, Morrison GM (1999) Platinum uptake by the freshwater isopodAsellus aquaticus in urban rivers. Sci Total Environ 235, 261–268

    Article  CAS  Google Scholar 

  • Rauch S, Morrison GM (2000) Routes for Bioaccumulation and Transformation of Platinum in the Urban Environment. In Alt F, Zereini F (eds.) Anthropogenic Platinum-Group-Element Emissions and their Impact on Man and Environment, 85–93, Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318, 1–43

    Article  CAS  Google Scholar 

  • Renner H, Schmuckler G (1991) Platinum-Group Metals, in Merian E (ed.) Metals and their compounds in the environment, 1135–1151, VCH Verlagsgesellschaft mbH Weinheim

  • Schäfer J (1998) Einträge und Kontaminationspfade Kfz-emittierter Platin- Gruppen-Elemente (PGE) in verschiedenen Umweltkompartimenten. PhD thesis, University of Karlsruhe, Germany

  • Schäfer J, Hannker D, Eckhardt JD, Stuben D (1998) Uptake of traffic- related heavy metals and platinum group elements (PGE) by plants. Sci Total Environ 215, 59–67

    Article  Google Scholar 

  • Schuster M, Schwarzer M, Risse G (1999) Bestimmung von Palladium in Umweltkompartimenten. In Zereini F, Alt F (eds.) Emissionen von Platin- metallen: Analytik, Umwelt und Gesundheitsrelevanz, 55–66, Springer Verlag Berlin Heidelberg

    Google Scholar 

  • Sures B (2002) Charakterisierung aquatischer Wirt-Parasit-Interaktionen aus ökologischer und (öko-)toxikologischer Sicht. Habilitation thesis, University of Karlsruhe, Germany

  • Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126, S53-S60

    Article  CAS  Google Scholar 

  • Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology (in press)

  • Sures B, Thielen F, Zimmermann S (2002a) Untersuchungen zur Bioverfügbarkeit Kfz-emittierter Platingruppenelemente (PGE) für die aquatische Fauna unter besonderer Berücksichtigung von Palladium. UWSF - Z Umweltchem Ökotox 14, 30–36

    CAS  Google Scholar 

  • Sures B, Zimmermann S, Messerschmidt J, von Bohlen A (2002b) Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on Palladium. Ecotoxicology 11, 385–392

    Article  CAS  Google Scholar 

  • Sures B, Zimmermann S, Messerschmidt J, von Bohlen A, AltF (2001) First report on the uptake of automobile catalyst emitted Palladium by European eels(Anguilla anguilla) following experimental exposure to road dust. Environ Pollut 113, 341–345

    Article  CAS  Google Scholar 

  • Sures B, Zimmermann S, Sonntag C, Stuben D, Taraschewski H (2003) The acanthocephalanParatenuisentis ambiguus as a sensitive indicator of the precious metals Pt and Rh emitted from automobile catalytic converters. Environ Pollut 122, 401–405

    Article  CAS  Google Scholar 

  • Vaughan GT, Florence TM (1992) Platinum in the human diet, blood, hair and excreta. Sci Total Environ 111, 47–58

    Article  CAS  Google Scholar 

  • Veltz I, Arsac F, Biagianti-Risbourg S, Habets F, Lechenault H, Vemet G (1996) Effects of platinum (Pt4+) onLubriculus variegatus Müller (Annelida, Oligochaetae): acute toxicity and bioaccumulation. Arch Environ Contam Toxicol 31, 63–67

    Article  CAS  Google Scholar 

  • Veltz I, Arsac F, Bouillot J, Collery P, Habets F, Lechenault H, Paicheler JC, Vernet G (1994) Ecotoxicological study of platinum using anexperimental food chain. Preliminary results. In Collery P, Poirier LA, Littlefield NA, Etienne JC (eds.): Metal Ions in Biology and Medicine, 241–245, John Libbey Eurotext Paris

  • Verstraete D, Riondato J, Vercauteren J, Vercauteren J, Vanhaecke F, Moens L, Dams R, Verloo M (1998) Determination of the uptake of [Pt(NH3)4](NO3)2 by grass cultivated on a sandy loam soil and by cucumber plants, grown hydroponically. Sci Total Environ 218, 153–160

    Article  CAS  Google Scholar 

  • Wäber M, Laschka D, Peichl L (1996) Biomonitoring verkehrsbedingter Platin-Immissionen - Verfahren der standardisierten Graskultur im Untersuchungsgebiet München. UWSF - Z Umweltchem Ökotox 8, 3–7

    Article  Google Scholar 

  • WHO (1991) Environmental health criteria 125 - Platinum. World Health Organization, Geneva, Swiss

    Google Scholar 

  • WHO (2002) Environmental health criteria 226 - Palladium. World Health Organization, Geneva, Swiss

    Google Scholar 

  • Zereini F, Alt F (2000) Anthropogenic platinum-group element emission: Their impact on man and environment, Springer Verlag Berlin Heidelberg, Germany

    Google Scholar 

  • Zereini F, Alt F, Rankenburg K, Beyer JM, Artelt S (1997) Verteilung von Platingruppenelementen (PGE) in den Umweltkompartimenten Boden, Schlamm, Straßenstaub, Straßenkehrgut und Wasser. UWSF - Z. Umweltchem Ökotox 9, 193–200

    Article  CAS  Google Scholar 

  • Zereini F, Skerstupp B, Alt F, Helmers E, Urban H (1997) Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: Experimental results and environmental investigations. Sci Total Environ 206, 137–146

    CAS  Google Scholar 

  • Zhang BL, Sun WY, Tang WX (1997) Determination of the association constant of platinum(II) to metallothionein. J Inorg Biochem 65, 295–298

    Article  CAS  Google Scholar 

  • Zhang Q, Zhong W, Xing B, Tang W, Chen Y (1998) Binding properties and stoichiometries of a palladium(II) complex to metallothioneinsin vivo andin vitro. J Inorg Biochem 72, 195–200

    Article  CAS  Google Scholar 

  • Zhong W, Zhang Q, Yan Y, Yue S, Zhang B, Tang W (1997a) Interaction of sodium chloroplatinate and iproplatin with metallothioneinin vivo. J Inorg Biochem 66, 159–164

    Article  Google Scholar 

  • Zhong W, Zhang Q, Yan Y, Yue S, Zhang B, Tang W (1997b) Reaction of a Platinum(IV) Complex with Native Cd, Zn-Metallothionein in vitro. J Inorg Biochem 66, 179–186

    Article  CAS  Google Scholar 

  • Zimmermann S (2002) Untersuchungen zur Analytik und biologischen Verfügbarkeit der Platingruppenelemente Platin, Palladium und Rhodium. PhD thesis, University of Karlsruhe, Germany

    Google Scholar 

  • Zimmermann S, Alt F, Messerschmidt J, von Bohlen A, Taraschewski H, Sures B (2002) Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel(Dreissena polymorpha) in water containing road dust. Environ Toxicol Chem 21, 2713–2718

    Article  Google Scholar 

  • Zimmermann S, Baumann U, Taraschewski H, Sures B (2004) Accumulation and distribution of platinum and rhodium in the European eelAnguilla anguilla following exposure to metal salts. Environ Pollut 127, 195–202

    Article  CAS  Google Scholar 

  • Zimmermann S, Menzel CM, Berner Z, Eckhardt JD, Stuben D, Alt F, Messerschmidt J, Taraschewski H, Sures B (2001) Trace analysis of platinum in biological samples: a comparison between sector field ICP-MS and adsorptive cathodic stripping voltammetry following different digestion procedures. Anal Chim Acta 439, 203–209

    Article  CAS  Google Scholar 

  • Zimmermann S, Messerschmidt J, von Bohlen A, Sures B (2003) Determination of the platinum group metals Pt, Pd and Rh in biological samples by electrothermal atomic absorption spectrometry as compared with adsorptive cathodic stripping voltammetry and total reflection X-ray fluo- rescence analysis. Anal Chim Acta 498, 93–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, S., Sures, B. Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ Sci & Pollut Res 11, 194–199 (2004). https://doi.org/10.1007/BF02979675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02979675

Keywords

Navigation