Skip to main content
Log in

Serotonin neurotoxins — past and present

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Autoxidation pathways and redox reactions of dihydroxytryptamines (5,6- and 5,7-DHT) and of 6-hydroxydopamine (6-OH-DA) are illustrated, and their potential role in aminergic neurotoxicity is discussed. It is proposed that certain aspects of the cytotoxicity of 6-OH-DA and of the DHTs, namely redox cycling of their quinone- and quinoneimine-intermediates as a source of free radicals, may also apply to quinoidal reactive intermediates and to glutathionylor cysteinyl conjugates (“thioether adducts”) ofo-dihydroxylated (catechol-like) metabolites of certain substituted amphetamines (of methylenedioxymethamphetamine (MDMA) and of methylenedioxyamphetamine (MDA). Despite similarities in their primary interaction with the plasmalemmal (serotonergic transporter/dopamine transporter, SERT/DAT) and vesicular monoamine transporters (VMAT2), MDMA and fenfluramine (N-ethyl-meta-trifluoromethamphetamine, Fen) differ substantially in many aspects of their metabolism, pharmacokinetics, pharmacology, and neurotoxicology profile; the consequences of these differences for neuronal response patterns and long-term survival prospects are not yet fully understood. However, sustained hyperthermia appears to be a critical factor in these differences.

Methodological requirements for adequate detection and description of pre- and postsynaptic forms of drug-induced neurotoxicity are exemplified using recently published accounts. The inclusion of microglial markers into research strategies has widened contemporary pathogenetic concepts on methamphetamine (MA) -induced neurotoxicity as an example of inflammatory neurodegeneration, thus complementing the traditional ROS and RNS-dependent stress models. Amphetamine-type neurotoxicity studies may assist in elaborating of preventive strategies for human neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acarin L, B Gonzalez and B Castellano (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain.Eur. J. Neurosci. 12, 3505–3520.

    Article  PubMed  CAS  Google Scholar 

  • Albers DS and MF Beal (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease.J. Neural Transm. Suppl. 59, 133–154. Review.

    PubMed  CAS  Google Scholar 

  • Asanuma M, T Tsuji, I Miyazaki, K Miyoshi and N Ogawa (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug.Neurosci. Lett. 352, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Axt KJ, LA Mamounas and ME Molliver (1994) Structural features of amphetamine neurotoxicity in the brain, In:Amphetamine and its Analogs (Cho AK and DS Segal, Eds.) (Academic Press: San Diego, New York), pp 315–367.

    Google Scholar 

  • Bai F, DC Jones, SS Lau and TJ Monks (2001) Serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxyamphetamine and 3,4-(+/-)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of gamma-glutamyl transpeptidase.Chem. Res. Toxicol. 14, 863–870.

    Article  PubMed  CAS  Google Scholar 

  • Bai F, SS Lau and TJ Monks (1999) Glutathione and N-acetylcysteine conjugates of ?-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetaminemediated neurotoxicity.Chem. Res. Toxicol. 12, 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  • Bal-Price A and GC Brown (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity.J. Neurosci. 21, 6480–6491.

    PubMed  CAS  Google Scholar 

  • Battaglia G, SY Yeh, E O’Hearn, ME Molliver, MJ Kuhar and EB De Souza (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites.J. Pharmacol. Exp. Ther. 242, 911–916.

    PubMed  CAS  Google Scholar 

  • Battaglia G, SY Yeh and EB De Souza (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons.Pharmacol. Biochem. Behav. 29, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, F Fornai, CL Busceti, G Aloisi, F Cerrito, A De Blasi, D Melchiorri and F Nicoletti (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity.J. Neurosci. 22, 2135–2141.

    PubMed  CAS  Google Scholar 

  • Baumgarten HG and A Björklund (1976) Neurotoxic indoleamines and monoamine neurons.Annu. Rev. Pharmacol Toxicol. 16, 101–111. Review.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG and Z Grozdanovic (2000) 6-Hydroxydopamine, In:Experimental and Clinical Neurotoxicology, 2nd Edition, (Spencer P, HH Schaumburg and AC Ludolph, Eds.) (Oxford University Press: Oxford, New York), pp 659–667.

    Google Scholar 

  • Baumgarten HG and B Zimmermann (1992) Neurotoxic phenylalkylamines and indolealkylamines, In:Selective Neurotoxicity (Herken H and F Hucho, Eds.) (Springer-Verlag: Berlin, Heidelberg, New York).Handbook Exp. Pharmacol. 102, pp 225–291.

    Google Scholar 

  • Baumgarten HG, A Björklund, L Lachenmayer, A Nobin and U Stenevi (1971) Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine.Acta Physiol. Scand. Suppl. 373, 1–15.

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, A Björklund, L Lachenmayer and A Nobin (1973) Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the rat CNS.Acta Physiol. Scand. Suppl. 391, 1–19.

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, A Björklund, L Lachenmayer, A Rensch and E Rosengren (1974) De- and regeneration of the bulbospinal serotonin neurons in the rat following 5,6- or 5,7-dihydroxytryptamine treatment.Cell Tissue Res. 152: 271–281.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, A Björklund, A Nobin, E Rosengren and HG Schlossberger (1975) Neurotoxicity of hydroxylated tryptamines: structure-activity relationships. 1. Long-term effects on monoamine content and fluorescence morphology of central monoamine neurons.Acta Physiol. Scand. Suppl. 429, 5–27.

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, L Lachenmayer and A Björklund (1977) Chemical lesioning of indoleamine pathwys, In:Methods in Psychobiology, Vol. III (Myers RD, Ed.) (Academic Press: London, Nw York), pp 47–98.

    Google Scholar 

  • Baumgarten HG, HP Klemm, J Sievers and HG Schlossberger (1982) Dihydroxytryptamines as tools to study the neurobiology of serotonin.Brain Res. Bull. 9, 131–150.

    Article  PubMed  CAS  Google Scholar 

  • Bergami A, C Fracasso, S Garattini and S Caccia (1995) Brain uptake and acute indole-depleting effect of dexfenfluramine in squirrel monkeys after a high-dose regime.Pharmaceut. Sci. 1, 45–48.

    CAS  Google Scholar 

  • Birmes P, D Coppin, L Schmitt and D Lauque (2003) Serotonin syndrome: abrief review.CMAJ 168, 1439–1442. Review.

    PubMed  Google Scholar 

  • Björklund A and L Wiklund (1980) Mechanisms of regrowth of the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. I. Biochemical correlates.Brain Res. 191, 109–127.

    Article  Google Scholar 

  • Björklund A, HG Baumgarten and A Rensch (1975a) 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine.J. Neurochem. 24, 833–835.

    PubMed  Google Scholar 

  • Björklund A, AS Horn, HG Baumgarten, A Nobin and HG Schlossberger (1975b) Neurotoxicity of hydroxylated tryptamines: structure-activity relationships. 2.In vitro studies on monoamine uptake inhibition and uptake impairment.Acta Physiol. Scand. Suppl. 429, 29–60.

    PubMed  Google Scholar 

  • Blank CL, RJ Lewis and RE Lehr (1998) 6-Hydroxydopamine and related catecholaminergic neurotoxins, In:Highly Selective Neurotoxins (Kostrzewa RM, Ed.) (Humana Press: Totowa, NJ), pp 1–18.

    Google Scholar 

  • Bolton JL, MA Trush, TM Penning, G Dryhurst and TJ Monks (2000) Role of quinones in toxicology.Chem. Res. Toxicol. 13, 135–160. Review.

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JF, JF Young, W Slikker Jr, Y Itzak, AJ Mayorga, GD Newport, SF Ali, DL Frederick and MG Paule (2003) Plasma levels of parent compound and metabolites after doses of either d-fenfluramine or d-3,4-methylenedioxymethamphetamine (MDMA) that produce long-term serotonergic alterations.Neurotoxicology 24, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Brown JM and BK Yamamoto (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress.Pharmacol. Ther. 99, 45–53. Review

    Article  PubMed  CAS  Google Scholar 

  • Brown PL and EA Kiyatkin (2004) Brain hyperthermia induced by MDMA (‘ecstasy’): modulation by environmental conditions.Eur. J. Neurosci. 20, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Bruno V, I Ksiazek, G Battaglia, S Lukic, T Leonhardt, D Sauer, F Gasparini, R Kuhn, F Nicoletti and PJ Flor (2000) Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective.Neuropharmacology 39, 2223–2230.

    Article  PubMed  CAS  Google Scholar 

  • Buchert R, R Thomasius, F Wilke, K Petersen, B Nebeling, J Obrocki, O Schulze, U Schmidt and M Clausen (2004) A Voxelbased PET investigation of the long-term effects of “Ecstasy” consumption on brain serotonin transporters.Am. J. Psychiatry 161, 1181–1189.

    Article  PubMed  Google Scholar 

  • Burrows KB, G Gudelsky and BK Yamamoto (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration.Eur. J. Pharmacol. 398, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Caccia S, M Ballabio, G Guiso, M Rocchetti and S Garattini (1982) Species differences in the kinetics and metabolism of fenfluramine isomers.Arch. Int. Pharmacodyn. Ther. 258, 15–28.

    PubMed  CAS  Google Scholar 

  • Caccia S, A Bergami, C Fracasso, S Garattini and B Campbell (1995) Oral kinetics of dexfenfluramine and dexnorfenfluramine in non-human primates.Xenobiotica 25, 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  • Caccia S, S Confalonieri, A Bergami, C Fracasso, M Anelli and S Garattini (1997) Neuropharmacological effects of low and high doses of repeated oral dexfenfluramine in rats: a comparison with fluoxetine.Pharmacol. Biochem. Behav. 57, 851–856.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, B Ladenheim, I Baum, E Carlson and C Epstein (1994) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA).Brain Res. 655, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi, MT McCoy, M Vawter and B Ladenheim (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array.Synapse 41, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, MT McCoy and B Ladenheim (2002) Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: evidence from cDNA array analyses.Synapse 44, 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi and X Deng (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis.FASEB J. 17, 1775–1788. Review.

    Article  PubMed  CAS  Google Scholar 

  • Camarero J, V Sanchez, E O’Shea, AR Green and MI Colado (2002) Studies, usingin vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced dopamine release and free radical formation in the mouse striatum.J. Neurochem. 81, 961–972.

    Article  PubMed  CAS  Google Scholar 

  • Campbell DB, RP Richards, S Caccia and S Garattini (1986) Stereo-selective metabolism and the fate of fenfluramine in animals and man., In:Development of Drug and Modern Medicines (Gorrod JW, GC Gibson and M Mitchard, Eds.) (Horwood: Chichester, UK), pp 298–311.

    Google Scholar 

  • Cappon GD, C Pu and CV Vorhees (2000) Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment.Brain Res. 863, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, F Remiao, N Milhazes, F Borges, E Fernandes, C Monteiro Mdo, MJ Goncalves, V Seabra, F Amado, F Carvalho and ML Bastos (2004a) Metabolism is required for the expression of ecstasy-induced cardiotoxicityin vitro.Chem. Res. Toxicol. 17, 623–632.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, F Remiao, N Milhazes, F Borges, E Fernandes, F Carvalho and ML Bastos (2004 b) The toxicity ofN-methyl-α-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid andN-acetylcysteine.Toxicology 200, 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, N Milhazes, F Remiao, F Borges, E Fernandes, F Amado, TJ Monks, F Carvalho and ML Bastos (2004c) Hepatotoxicity of 3,4-methylenedioxyamphetamine and α-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates.Arch. Toxicol. 78, 16–24.

    Article  PubMed  CAS  Google Scholar 

  • Cheymol G, J Weissenburger, JM Poirier and C Gellee (1995) The pharmacokinetics of dexfenfluramine in obese and non-obese subjects.Br. J. Clin. Pharmacol. 39, 684–687.

    PubMed  CAS  Google Scholar 

  • Cho AK and Y Kumagai (1994) Metabolism of amphetamine and other arylisopropylamines, In:Amphetamines and its Analogs (Cho AK and DS Segal, Eds.) (Academic Press, San Diego, New York), pp 43–77.

    Google Scholar 

  • Cho AK, WP Melega, R Kuczenski and DS Segal (2001) Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse.Synapse 39, 161–166. Review.

    Article  PubMed  CAS  Google Scholar 

  • Cho T, Y Kumagai, EW DiStefano and AK Cho (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion.Biochem. Pharmacol. 51, 789–796.

    Article  PubMed  Google Scholar 

  • Choi S, E Jonak and JD Fernstrom (2004) Serotonin reuptake inhibitors do not prevent 5,7-dihydroxytryptamine-induced depletion of serotonin in rat brain.Brain Res. 1007, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Christensen JD, DA Yurgelun-Todd, SM Babb, SA Gruber, BM Cohen and PF Renshaw (1999) Measurement of human brain dexfenfluramine concentration by19F magnetic resonance spectroscopy.Brain Res. 834, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Clausing P, GD Newport and JF Bowyer (1998) Fenfluramine and norfenfluramine levels in brain microdialysate, brain tissue and plasma of rats administered doses of d-fenfluramine known to deplete 5-hydroxytryptamine levels in brain.J. Pharmacol. Exp. Ther. 284, 618–624.

    PubMed  CAS  Google Scholar 

  • Colado MI, E O’Shea, R Granados, TK Murray and AR Green (1997) In vivo evidence for free radical involvement in the degeneration of rat brain 5-HT following administration of MDMA (‘ecstasy’) and p-chloroamphetamine but not the degeneration following fenfluramine.Br. J. Pharmacol. 121, 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, E O’Shea, R Granados, B Esteban, AB Martin and AR Green (1999) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’) administration.Br. J. Pharmacol. 126, 911–924.

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, J Camarero, AO Mechan, V Sanchez, B Esteban, JM Elliott and AR Green (2001) A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethampheta mine (MDMA, ‘ecstasy’) on dopamine neurones in mouse brain.Br. J. Pharmacol. 134, 1711–1723.

    Article  PubMed  CAS  Google Scholar 

  • Commins DL, KJ Axt, G Vosmer and LS Seiden (1987a) 5,6-Dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in the rat brain.Brain Res. 403, 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Commins DL, KJ Axt, G Vosmer and LS Seiden (1987b) Endogenously produced 5,6-dihydroxytryptamine may mediate the neurotoxic effects of para-chloroamphetamine.Brain Res. 419, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • de la Torre R and M Farre M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans.Trends Pharmacol. Sci. 25(10), 505–508.

    Article  PubMed  CAS  Google Scholar 

  • de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, Segura J and J Cami (2000) Non-linear pharmacokinetics of MDMA (’ecstasy’) in humans.Br. J. Clin. Pharmacol. 49, 104–109.

    Article  PubMed  Google Scholar 

  • de la Torre R, M Farre, PN Roset, N Pizarro, S Abanades, M Segura, J Segura and J Cami (2004) Human pharmacology of MDMA, pharmacokinetics, metabolism, and disposition.Ther. DrugMonit. 26, 137–144.

    Article  Google Scholar 

  • de Souza EB, G Battaglia and TR Insel (1990) Neurotoxic effect of MDMA on brain serotonin neurons, evidence from neurochemical and radioligand binding studies.Ann. NYAcad. Sci. 600, 682–698. Review.

    Google Scholar 

  • Deng X and JL Cadet (1999) Methamphetamine administration causes overexpression of nNOS in the mouse striatum.Brain Res. 851, 254–257.

    Article  PubMed  CAS  Google Scholar 

  • Deng X, B Ladenheim, LI Tsao and JL Cadet (1999) Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity.J. Neurosci. 19, 10107–10115.

    PubMed  CAS  Google Scholar 

  • Deng X, NS Cai, MT McCoy, W Chen, MA Trush and JL Cadet (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway.Neuropharmacology 42, 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Easton N, J Fry, E O’Shea, A Watkins, S Kingston and CA Marsden (2003) Synthesis,in vitro formation, and behavioural effects of glutathione regioisomers of α-methyldopamine with relevance to MDA and MDMA (ecstasy).Brain Res. 987, 144–154.

    Article  PubMed  CAS  Google Scholar 

  • Ener RA, SB Meglathery, WA Van Decker and RM Gallagher (2003) Serotonin syndrome and other serotonergic disorders.Pain Med. 4, 63–74. Review.

    Article  PubMed  Google Scholar 

  • Farfel GM, GL Vosmer and LS Seiden (1992) TheN-methyl-D-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine, 3,4-methylene-dioxymethamphetamine and p-chloroamphetamine.Brain Res. 595, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Farre M, R de la Torre, BO Mathuna, PN Roset, AM Peiro, M Torrens, J Ortuno, M Pujadas and J Cami (2004) Repeated doses administration of MDMA in humans, pharmacological effects and pharmacokinetics.Psychopharmacology (Berl.) 173, 364–375.

    Article  CAS  Google Scholar 

  • Fischer C, G Hatzidimitriou, J Wlos, J Katz and G Ricaurte (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/-)3,4-methylene-dioxymethamphetamine (MDMA, “ecstasy”).J. Neurosci. 15, 5476–5485.

    PubMed  CAS  Google Scholar 

  • Fornai F, P Lenzi, M Gesi, P Soldani, M Ferrucci, G Lazzeri, L Capobianco, G Battaglia, A De Blasi, F Nicoletti and A Paparelli (2004a) Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC 12 cells.J. Neurochem. 88(1), 114–123.

    PubMed  CAS  Google Scholar 

  • Fornai F, P Lenzi, G Frenzilli, M Gesi, M Ferrucci, G Lazzeri, F Biagioni, M Nigro, A Falleni, M Giusiani, A Pellegrini, F Blandini, S Ruggieri and A Paparelli (2004b) DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy).Psychopharmacology (Berl.) 173, 353–363.

    Article  CAS  Google Scholar 

  • Fritschy JM and R Grzanna (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals.Neuroscience 30, 181–197.

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM and R Grzanna (1992) Degeneration of rat locus coeruleus neurons is not accompanied by an irreversible loss of ascending projections. Evidence for reestablishment of forebrain innervation by surviving neurons.Ann. NYAcad. Sci. 648, 275–278.

    Article  CAS  Google Scholar 

  • Fukumura M, GD Cappon, C Pu, HW Broening and CV Vorhees (1998) A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein.Brain Res. 806, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW and MG Henderson (1994) Neurochemistry of halogenated amphetamines, In:Amphetamines and its Analogs (Cho AK and DS Segal, Eds.) (Academic Press: San Diego, New York), pp 209–242.

    Google Scholar 

  • Gal EM and AD Sherman (1978) Cerebral metabolism of some serotonin depletors.Ann. NYAcad. Sci. 305, 119–127.

    CAS  Google Scholar 

  • Gao HM, B Liu B, W Zhang and JS Hong (2003) Novel antiinflammatory therapy for Parkinson’s disease.Trends Pharmacol. Sci. 24, 395–401. Review.

    Article  PubMed  CAS  Google Scholar 

  • Garattini S and S Caccia (1979) Comparison of the plasma levels of fenfluramine in rats after a toxic dose and in man after a maximal therapeutic dose.Toxicol. Lett. 3, 285–290.

    Article  CAS  Google Scholar 

  • Garattini S and S Caccia (1990) Significance of fenfluramine neurotoxicity, a kinetic approach, In:Serotonin-from Cell Biology to Pharmacology and Therapeutics (Paoletti R, PM Vanhoutte, M Brunello and FM Maggi, Eds.) (Kluwer: Dordrecht), pp 637–643.

    Google Scholar 

  • Garside S and PI Rosebush (2003) Serotonin syndrome, not a benign toxidrome.CMAJ 169, 543.

    PubMed  Google Scholar 

  • Gluck MR, LY Moy, E Jayatilleke, KA Hogan, L Manzino and PK Sonsalla (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment.J. Neurochem. 79, 152–60.

    Article  PubMed  CAS  Google Scholar 

  • Green AR, E O’Shea and MI Colado (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response.Eur. J. Pharmacol. 500, 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, MK Nihei, JL McGlothan and AS Howard (2003) Methamphetamine-induced deficits of brain monoaminergic neuronal markers, distal axotomy or neuronal plasticity.Neuroscience 122, 499–513.

    Article  PubMed  CAS  Google Scholar 

  • Hickey MJ, KA Sharkey, EG Sihota, PH Reinhardt, JD Macmicking, C Nathan and P Kubes (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia.FASEB J. 11, 955–964.

    PubMed  CAS  Google Scholar 

  • Itzhak Y, C Gandia, PL Huang and SF Ali (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamineinduced dopaminergic neurotoxicity.J. Pharmacol. Exp. Ther. 284, 1040–1047.

    PubMed  CAS  Google Scholar 

  • Itzhak Y, JL Martin and SF Ali (1999) Methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.Synapse 34, 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y, SF Ali and KL Anderson (2003) Fenfluramine-induced serotonergic neurotoxicity in mice, lack of neuroprotection by inhibition/ablation of nNOS.J. Neurochem. 87, 268–271.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby JA and LD Lytle (1978)Serotonin Neurotoxins. Ann. NY Acad. Sci. 305.

  • Jakab RL and JF Bowyer (2002) Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke.Brain Res. 958, 52–69.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, X Deng, M Bordelon, MT McCoy and JL Cadet (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex.FASEB J 15, 1745–1752.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, X Deng, PA Noailles, B Ladenheim and JL Cadet (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades.FASEB J 18, 238–251.

    Article  PubMed  CAS  Google Scholar 

  • Jekabsone A, L Ivanoviene, GC Brown and V Borutaite (2003) Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochromec release.J. Mol. Cell. Cardiol. 35, 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, AA Shvedova, E Kisin, JP O’Callaghan, C Kommineni and DB Miller (2002) d-MDMA during vitamin E deficiency, effects on dopaminergic neurotoxicity and hepatotoxicity.Brain Res. 933, 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, JP O’Callaghan and DB Miller (2004) Brain concentrations of d-MDMA are increased after stress.Psychopharmacology (Berl.) 173, 278–286.

    Article  CAS  Google Scholar 

  • Jones DC, SS Lau and TJ Monks (2004) Thioether metabolites of MDA and MAMA inhibit hsert function and simultaneously stimulate dopamine uptake into hsert-expressing SK-N-MC Cells.J. Pharmacol. Exp. Ther. 311, 298–306.

    Article  PubMed  CAS  Google Scholar 

  • Keelan J, O Vergun and MR Duchen (1999) Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons.J. Physiol. 520, 797–813.

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA (2004) Brain hyperthermia during physiological and pathological conditions: causes, mechanisms, and functional implications.Curr. Neurovasc. Res. 1, 77–90.

    Article  PubMed  Google Scholar 

  • Klemm HP, HG Baumgarten and HG Schlossberger (1980) Polarographic measurements of spontaneous and mitochondriapromoted oxidation of 5,6- and 5,7-dihydroxytryptamine.J. Neurochem. 35, 1400–1408.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer T and HH Maurer (2002) Toxicokinetics of amphetamines, metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and theirN-alkyl derivatives.Ther. Drug Monit. 24, 277–289. Review.

    Article  PubMed  CAS  Google Scholar 

  • Ladenheim B, IN Krasnova, X Deng, JM Oyler, A Polettini, TH Moran, MA Huestis and JL Cadet (2000) Methamphetamineinduced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.Mol. Pharmacol. 58, 1247–1256.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ, JP Card and TG Hastings (2004) Microglial activation precedes dopamine terminal pathology in methamphetamineinduced neurotoxicity.Exp. Neurol. 187, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Lee YW, KW Son, G Flora, B Hennig, A Nath and M Toborek (2002) Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain.J. Neurosci. Res. 70, 82–89.

    Article  PubMed  CAS  Google Scholar 

  • Lin LY, EW Di Stefano, DA Schmitz, L Hsu, SW Ellis, MS Lennard, GT Tucker and AK Cho (1997) Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6.DrugMetab. Dispos. 25, 1059–1064.

    CAS  Google Scholar 

  • Lotharius J and P Brundin (2002) Pathogenesis of Parkinson’s disease, dopamine, vesicles and ?-synuclein.Nat. Rev. Neurosci. 3, 932–942. Review.

    Article  PubMed  CAS  Google Scholar 

  • Luellen BA, DB Miller, AC Chisnell, DL Murphy, JP O’Callaghan and AM Andrews (2003) Neuronal and astroglial responses to the serotonin and norepinephrine neurotoxin, 1-methyl-4-(2’-amino-phenyl)-1,2,3,6-tetrahydropyridine.J. Pharmacol. Exp. Ther. 307, 923–931.

    Article  PubMed  CAS  Google Scholar 

  • McCann U, G Hatzidimitriou, A Ridenour, C Fischer, J Yuan, J Katz and G Ricaurte (1994a) Dexfenfluramine and serotonin neurotoxicity, further preclinical evidence that clinical caution is indicated.J. Pharmacol. Exp. Ther. 269, 792–798.

    PubMed  CAS  Google Scholar 

  • McCann UD, A Ridenour, Y Shaham and GA Ricaurte (1994b) Serotonin neurotoxicity after (+/-)3,4-methylenedioxymetham-phetamine (MDMA; “Ecstasy”), a controlled study in humans.Neuropsychopharmacology 10, 129–138.

    PubMed  CAS  Google Scholar 

  • McCann UD, V Eligulashvili and GA Ricaurte (1998) Adverse neuropsychiatric events associated with dexfenfluramine and fenfluramine. Prog. Neuropsychopharmacol.Biol. Psychiatry 22, 1087–11102.

    CAS  Google Scholar 

  • MacMicking J, QW Xie and C Nathan (1997) Nitric oxide and macrophage function. Annu.Rev. Immunol. 15, 323–350. Review.

    Article  CAS  Google Scholar 

  • Mennini T, C Fracasso, A Cagnotto, A Bergami, E Frittoli, M Gobbi, S Caccia and S Garattini (1996)In vitro andin vivo effects of the anorectic agent dexfenfluramine on the central serotoninergic neuronal systems of non-human primates. A comparison with the rat.Naunyn Schmiedebergs Arch. Pharmacol. 353, 641–647.

    Article  PubMed  CAS  Google Scholar 

  • Miller DB and JP O’Callaghan (1995) The role of temperature, stress, and other factors in the neurotoxicity of the substituted amphetamines 3,4-methylenedioxymethamphetamine and fenfluramine.Mol. Neurobiol. 11, 177–192.

    Article  PubMed  CAS  Google Scholar 

  • Miller DB and JP O’Callaghan. (2003) Elevated environmental temperature and methamphetamine neurotoxicity.Environ. Res. 92, 48–53.

    Article  PubMed  CAS  Google Scholar 

  • Miller RT, SS Lau and TJ Monks (1997) 2,5-Bis-(glutathion-S-yl)-α-methyl-dopamine, a putative metabolite of (+/-)-3,4-methyl-enedioxyamphetamine, decreases brain serotonin concentrations.Eur. J. Pharmacol. 323, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Mills EM, DE Rusyniak and JE Sprague (2004) The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine.J. Mol. Med., in press.

  • Molliver ME, UV Berger, LA Mamounas, DC Molliver, E O’Hearn and MA Wilson (1990) Neurotoxicity of MDMA and related compounds, anatomic studies.Ann. NYAcad. Sci. 600, 649–661.

    CAS  Google Scholar 

  • Monks TJ and DC Jones (2003) Metabolism and toxicity of quinones, quinonimines, quinone methides, and quinonethioethers.Curr. Drug Metab. 3, 425–438. Review.

    Article  Google Scholar 

  • Monks TJ and SS Lau (1997) Biological reactivity of polyphenolicglutathione conjugates.Chem. Res. Toxicol. 10, 1296–1313. Review.

    Article  PubMed  CAS  Google Scholar 

  • Monks TJ and SS Lau (1998) The pharmacology and toxicology of polyphenolic-glutathione conjugates.Annu. Rev. Pharmacol. Toxicol. 38, 229–255. Review.

    Article  PubMed  CAS  Google Scholar 

  • Monks TJ, DC Jones, F Bai and SS Lau (2004) The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-meth-ylenedioxymethamphetamine (ecstasy) toxicity.Ther. Drug Monit. 26, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Nash JF and BK Yamamoto (1992) Methamphetamine neurotoxicity and striatal glutamate release, comparison to 3,4-methylene-dioxymethamphetamine.Brain Res. 581, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf WL, KB Burrows, GA Gudelsky and BK Yamamoto (2001) Enhancement of 3,4-methylenedioxymethamphetamine neurotoxicity by the energy inhibitor malonate.J. Neurochem. 77, 647–654.

    Article  PubMed  CAS  Google Scholar 

  • Nobin A, HG Baumgarten, A Björklund, L Lachenmayer and U Stenevi (1973) Axonal degeneration and regeneration of bul-bospinal indolamine neurons after 5,6-dihydroxytryptamine treatment.Brain Res. 56, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan JP and DB Miller (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse.J. Pharmacol. Exp. Ther. 270, 741–751.

    PubMed  CAS  Google Scholar 

  • O’Callaghan JP and DB Miller (2001) Neurotoxic effects of substituted amphetamines in rats and mice, InHandbook of Neurotoxicology, Vol. 2 (Masssaro EJ, Ed.) (Humana Press: Totowa NJ), pp 269–301.

    Google Scholar 

  • Orio L, E O’Shea, V Sanchez, JM Pradillo, I Escobedo, J Camarero, MA Moro, AR Green and MI Colado (2004) 3,4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain, studies on the relationship with acute hyperthermia and 5-HT depletion.J. Neurochem. 89, 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  • Peng W and R Simantov (2003) Altered gene expression in frontal cortex and midbrain of 3,4-methylenedioxymethamphetamine (MDMA) treated mice, differential regulation of GABA transporter subtypes.J. Neurosci. Res. 72, 250–258.

    Article  PubMed  CAS  Google Scholar 

  • Pisani A, P Gubellini, P Bonsi, F Conquet, B Picconi, D Centonze, G Bernardi and P Calabresi (2001) Metabotropic glutamate receptor 5 mediates the potentiation ofN-methyl-D-aspartate responses in medium spiny striatal neurons.Neuroscience 106, 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, LE DeLanney, I Irwin and JW Langston (1988) Toxic effects of MDMA on central serotonergic neurons in the primate, importance of route and frequency of drug administration.Brain Res. 446, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, J Yuan and UD McCann (2000a) (+/-)3,4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity, studies in animals.Neuropsychobiology 42, 5–10. Review.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, UD McCann, Z Szabo and U Scheffel (2000b) Toxicodynamics and long-term toxicity of the recreational drug, 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’).Toxicol. Lett. 112-113, 143–146. Review.

    Article  PubMed  CAS  Google Scholar 

  • Rocher C and AM Gardier (2001) Effects of repeated systemic administration of d-fenfluramine on serotonin and glutamate release in rat ventral hippocampus, comparison with methamphetamine usingin vivo microdialysis.Naunyn Schmiedebergs Arch. Pharmacol. 363, 422–428.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren E, E Linder-Eliasson and A Carlsson (1985) Detection of 5-S-cysteinyl-dopamine in human brain.J. Neural Transm. 63, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB and MH Baumann (2000) Neurochemical mechanisms of phentermine and fenfluramine, therapeutic and adverse effects.DrugDev. Res. 51, 52–65.

    Article  CAS  Google Scholar 

  • Rothman RB, MH Baumann, CM Dersch, DV Romero, KC Rice, FI Carroll and JS Partilla (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin.Synapse. 39, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, S Jayanthi, X Wang, CM Dersch, JL Cadet, T Prisinzano, KC Rice and MH Baumann (2003) High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain.Synapse 50, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G and SC Wall (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxymethamphetamine (MDMA)], serotonin transporters are targets for MDMA-induced serotonin release.Proc. Natl. Acad. Sci. USA 89, 1817–1821.

    Article  PubMed  CAS  Google Scholar 

  • Sabol KE, JB Richards and LS Seiden (1992) The NMDA receptor antagonist MK-801 does not protect against serotonin depletions caused by high doses of DL-fenfluramine.Brain Res. 582, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Salzmann J, C Marie-Claire, S Le Guen, BP Roques and F Noble (2003) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice.Br. J. Pharmacol. 140, 831–838.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, M Zeini, J Camarero, E O’Shea, L Bosca, AR Green and MI Colado (2003) The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immuno-reactivity induced by methamphetamine in the mouse striatum.J. Neurochem. 85, 515–524.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 240, 1–7.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ (1994) Neurochemistry of ring-substituted amphetamine analogs, In:Amphetamine and its Analogs (Cho AK and DS Segal (Eds.) (Academic Press: San Diego, New York), pp 151–176.

    Google Scholar 

  • Schmidt CJ, L Wu and W Lovenberg (1986) Methylenedioxymethamphetamine, a potentially neurotoxic amphetamine analogue.Eur. J. Pharmacol. 124, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC (2003) Demonstration and localization of neuronal degeneration in the rat forebrain following a single exposure to MDMA.Brain Res. 974, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Schmued L, W Slikker Jr, P Clausing and J Bowyer (1999) d-Fenfluramine produces neuronal degeneration in localized regions of the cortex, thalamus, and cerebellum of the rat.Toxicol. Sci. 48, 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Segura M, J Ortuno, M Farre, JA McLure, M Pujadas, N Pizarro, A Llebaria, J Joglar, PN Roset, J Segura and R de La Torre (2001) 3,4-Dihydroxymethamphetamine (HHMA). A majorin vivo 3,4-methylenedioxymethamphetamine (MDMA) metabolite in humans.Chem. Res. Toxicol. 14, 1203–1208.

    Article  PubMed  CAS  Google Scholar 

  • Segura M, J Ortuno, JA McLure, M Pujadas, N Pizarro, M Farre, A Llebaria, J Joglar, J Segura and R de la Torre (2002) High-performance liquid chromatography with electrochemical detection applied to the analysis of 3,4-dihydroxymethamphetamine in human plasma and urine.J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 769, 313–321.

    Article  CAS  Google Scholar 

  • Seiden LS and G Vosmer (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine.Pharmacol. Biochem. Behav. 21, 29–31.

    Article  PubMed  CAS  Google Scholar 

  • Shankaran M, BK Yamamoto and GA Gudelsky (2001) Ascorbic acid prevents 3,4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT.Synapse 40, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Siman R, TK McIntosh, KM Soltesz, Z Chen, RW Neumar and VL Roberts (2004) Proteins released from degenerating neurons are surrogate markers for acute brain damage.Neurobiol. Dis. 16, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Simantov R and W Peng (2004) MDMA (Ecstasy) controls in concert a group of genes involved in GABA neurotransmission.FEBS Lett. 563, 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Sinhababu AK and RT Borchardt (1985) Mechanism and products of autoxidation of 5,7-dihydroxytryptamine.J. Am. Chem. Soc. 107, 7618–7627.

    Article  CAS  Google Scholar 

  • Sotelo C (1991) Immunohistochemical study of short- and longterm effects of DL-fenfluramine on the serotonergic innervation of the rat hippocampal formation.Brain Res. 541, 309–326.

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Whiteman M, Jenner P and B Halliwell (2002) 5-S-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons.J. Neurochem. 81, 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Sprague JE, RE Brutcher, EM Mills, D Caden and DE Rusyniak (2004a) Attenuation of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-induced rhabdomyolysis with α1- plus ß3-adrenoreceptor antagonists.Br. J. Pharmacol. 142, 667–670.

    Article  PubMed  CAS  Google Scholar 

  • Sprague JE, NM Mallett, DE Rusyniak and E Mills (2004b) UCP3 and thyroid hormone involvement in methamphetamine-induced hyperthermia.Biochem. Pharmacol. 68, 1339–1343.

    Article  PubMed  CAS  Google Scholar 

  • Stewart CW, JF Bowyer and W Slikker Jr (1997) Elevated environmental temperatures can induce hyperthermia during d-fenfluramine exposure and enhance 5-hydroxytryptamine (5-HT) depletion in the brain.J. Pharmacol. Exp. Ther. 283, 1144–1150.

    PubMed  CAS  Google Scholar 

  • Stewart VC, MA Sharpe, JB Clark and SJ Heales (2000) Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain.J. Neurochem. 75, 694–700.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, T Morioka and AN Kalehua (1992) MK-801 prevents microglial reaction in rat hippocampus after forebrain ischemia.Neuroreport 3, 146–148.

    Article  PubMed  CAS  Google Scholar 

  • Tabatabaie T and G Dryhurst (1998) Molecular mechanisms of action of 5,6- and 5,7-dihydroxytryptamine, In:Highly Selective Neurotoxins (Kostrzewa RM, Ed.) (Humana Press: Totowa NJ), pp 269–291.

    Google Scholar 

  • Thiriet N, B Ladenheim, MT McCoy and JL Cadet (2002) Analysis of ecstasy (MDMA) -induced transcriptional responses in the rat cortex.FASEB J 16, 1887–1894.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H and JP Tranzer (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn SchmiedebergsArch. Pharmacol. Exp. Pathol. 261, 271–288.

    Article  CAS  Google Scholar 

  • Thoenen H and JP Tranzer (1973) The pharmacology of 6-hydroxydopamine.Annu. Rev. Pharmacol. 113, 169–80. Review.

    Article  Google Scholar 

  • Thomas DM, PD Walker, JA Benjamins, TJ Geddes and DM Kuhn (2004a) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.J. Pharmacol. Exp. Ther. 311, 1–7 (published online May 26, 2004).

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, DM Francescutti-Verbeem, X Liu and DM Kuhn (2004b) Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment — an oligonucleotide microarray approach.J. Neurochem. 88, 380–393.

    PubMed  CAS  Google Scholar 

  • Thomas DM, J Dowgiert, TJ Geddes, D Francescutti-Verbeem, X Liu and DM Kuhn (2004c) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.Neurosci. Lett. 367, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Tor-Agbidye J, B Yamamoto and JF Bowyer (2001) Seizure activity and hyperthermia potentiate the increases in dopamine and serotonin extracellular levels in the amygdala during exposure to d-amphetamine.Toxicol. Sci. 60, 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Ugolini A, M Corsi and F Bordi (1999) Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons.Neuropharmacology 38, 1569–1576.

    Article  PubMed  CAS  Google Scholar 

  • Vatassery GT (1996) Oxidation of vitamin E, vitamin C, and thiols in rat brain synaptosomes by peroxynitrite.Biochem. Pharmacol. 52, 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Vatassery GT, JC Lai, EG DeMaster, WE Smith and HT Quach (2004) Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite.J. Neurosci. Res. 75, 845–853.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, RT Jones and MJ Baggott (2001) Caveat emptor, editors beware.Neuropsychopharmacology 24, 461–463.

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, L Mao, NK Parelkar, Q Tang, Z Liu, S Sarwar and ES Choe (2003) Glutamate-regulated behavior, transmitter release, gene expression and addictive plasticity in the striatum, roles of metabotropic glutamate receptors.Curr. Neuropharmacol. 1, 1–20.

    Article  CAS  Google Scholar 

  • Wang X, MH Baumann, H Xu and RB Rothman (2004) 3,4-meth-ylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter pro tein and glial fibrillary acidic protein.Synapse 53, 240–248.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L and A Björklund (1980) Mechanisms of regrowth in the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. II. Fluorescence histochemical observations.Brain Res. 191, 129–160.

    Article  CAS  Google Scholar 

  • Wrona MZ and G Dryhurst (1998) Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders.Chem. Res. Toxicol. 11, 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Wrona MZ, Yang Z, McAdams M, O’Connor-Coates S and G Dryhurst (1995a) Hydroxyl radical-mediated oxidation of serotonin: potential insights into the neurotoxicity of methamphetamine.J. Neurochem. 64, 1390–1400.

    Article  PubMed  CAS  Google Scholar 

  • Wrona, MZ, S Singh and G Dryhurst (1995b) Influence of glu tathione on the electrochemical and enzymatic oxidation of serotonin.J. Electroanalyt. Chem. 362, 41–51.

    Article  Google Scholar 

  • Yeh SY (1999)N-tert-butyl-?-phenylnitrone protects against 3,4-methylenedioxymethamphetamine-induced depletion of serotonin in rats.Synapse 31, 169–177.

    PubMed  CAS  Google Scholar 

  • Zaczek R, G Battaglia, S Culp, NM Appel, JF Contrera and EB De Souza (1990) Effects of repeated fenfluramine administration on indices of monoamine function in rat brain, pharmacokinetic, dose response, regional specificity and time course data.J. Pharmacol. Exp. Ther. 253, 104–112.

    PubMed  CAS  Google Scholar 

  • Zheng Y and R Laverty (1998) Role of brain nitric oxide in (+/-)3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.Brain Res. 795, 257–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Baumgarten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgarten, H.G., Lachenmayer, L. Serotonin neurotoxins — past and present. neurotox res 6, 589–614 (2004). https://doi.org/10.1007/BF03033455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033455

Keywords

Navigation