Skip to main content
Log in

Regional and local hydrogeology of calcareous fens in the Minnesota River basin, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Six calcareous fens in the Minnesota River Basin, USA are in regional hydrogeologic settings with large discharges of calcareous ground water. These settings juxtapose topographically high areas of ground-water recharge with fens in lower areas of discharge, thus creating steep upward hydraulic gradients at the fens. Coarse glacial deposits with high permeability connect recharge areas to discharge areas and transmit large amounts of ground water to the fens. Calcareous fens in the Minnesota River Basin are associated with two regional landforms, river terraces and glacial moraines. The calcareous drift is the likely source of carbonate for the fens; carbonate bedrock is not required. Five of the calcareous fens form peat aprons over broad areas of diffuse ground-water discharge on river terraces. One of the calcareous fens is a peat dome over an aquifer window, a relatively small area (about 15-m radius) of localized ground-water discharge through a breach in the clayey confining layer of the underlying aquifer. Carbonate content of calcareous fen peat averaged about 27% (calcium carbonate equivalent, dry weight basis) in the surface layer, which commonly overlies a carbonate-depleted zone with a carbonate content of 10% or less. Hydraulic conductivity (K) of calcareous fen peat determined from slug tests ranged from 2.7×10−7 to 9.8×10−5 m s−1 and had a geometric mean of 3.8×10−6 m s−1. These values likely underestimate the true horizontal hydraulic conductivity (Kh) and overestimate the true vertical hydraulic conductivity (Kv) because of errors in assumptions commonly used in slug-test analyses. Median (over time) hydraulic heads in wells screened below the base of the peat ranged from about 25 to 69 cm above the peat surface. Upward vertical gradients (dimensionless) through the peat ranged from 0.040 to 0.209. Vertical ground-water discharge was calculated by Darey’s Law and ranged from 2 to 172 L m−2 d−1. Because of bias in estimating Kv, these values likely overestimate the true vertical ground-water discharge and indicate the importance of better field methods to estimate K, especially Kv. Calcareous fens may need water tables sustained near the peat surface by large vertical ground-water discharges to allow carbonate precipitation, which is associated with the rare fen vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, S. C. and E. C. Alexander. 1989. Residence times of Minnesota groundwaters. Journal of the Minnesota Academy of Science 55:48–52.

    Google Scholar 

  • Almendinger, J. E. and J. H. Leete. 1998. Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River Basin, U.S.A. Biogeochemistry (in press).

  • Anderson, H. W., Jr., D. F. Farrell, and W. L. Broussard. 1974. Water resources of the lower Minnesota River watershed, south-central Minnesota, U.S. Geological Survey Hydrologic Investigations Atlas HA-526.

  • Anderson, J. P. and W. J. Craig. 1984. Growing energy crops on Minnesota’s wetlands-The land use perspective. University of Minnesota Center for Urban and Regional Affairs. Minneapolis, MN, USA. Publication CURA 84-3.

    Google Scholar 

  • Baird, A. J. and S. W. Gaffney. 1994. Cylindrical piezometer responses in a humified fen peat. Nordic Hydrology 25:167–182.

    Google Scholar 

  • Balaban, N. H. and H. C. Hobbs (eds.). 1990. Geologic atlas-Dakota County, Minnesota. Minnesota Geological Survey County Atlas Series C-6, Minneapolis, MN, USA.

  • Balaban, N. H. and P. L. McSwiggen (eds.). 1982. Geologic atlas-Scott County, Minnesota. Minnesota Geological Survey County Atlas Series C-1, Minneapolis, MN, USA.

  • Bedford, B. L. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications 6:57–68.

    Article  Google Scholar 

  • Bengtsson, L. and M. Enell. 1986. Chemical analysis. p. 423–451.In B. Berglund (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York, NY, USA.

    Google Scholar 

  • Boelter, D. H. 1969. Physical properties of peats as related to degree of decomposition. Proceedings of the Soil Science Society of America 33:606–609.

    Article  Google Scholar 

  • Boyer, M. L. H. and B. D. Wheeler. 1989. Vegetation patterns in spring-fed calcareous fens: Calcite precipitation and constraints on fertility. Journal of Ecology 77:597–609.

    Article  CAS  Google Scholar 

  • Brand, E. W. and J. Premchitt. 1982. Response characteristics of cylindrical piezometers. Géotechnique 32:203–216.

    Article  Google Scholar 

  • Bridgham, S. D., J. Pastor, J. A. Janssens, C. Chapin, and T J. Malterer. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65.

    Google Scholar 

  • Brinson, M. M. 1993. A hydrogeomorphic classification for wetlands. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA. Technical report TR-WRP-DE-4.

    Google Scholar 

  • Carroll, S., R. T. Miller, and P. D. Whitson. 1984. Status of four orchid species at Silver Lake Fen complex. Proceedings of the Iowa Academy of Science 91:132–139.

    Google Scholar 

  • Chason, D. B. and D. I. Siegel. 1986. Hydraulic conductivity and related physical properties of peat, Lost River Peatland, northern Minnesota. Soil Science 142:91–99.

    Article  Google Scholar 

  • Chow, V. T. 1964. Handbook of Applied Hydrology. McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Coffin, B. and L. Pfannmuller (eds). 1988. Minnesota’s Endangered Flora and Fauna. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Cotter, R. D. and L. E. Bidwell. 1968. Water resources of the Lac Qui Parle River watershed, southeestern Minnesota. U. S. Geological Survey Hydrologic Investigations Atlas HA-269.

  • Cowardin, L. M., V. Carter, G. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.

    Google Scholar 

  • Curtis, J. T. 1971. The Vegetation of Wisconsin. The University of Wisconsin Press, Madison, WI, USA.

    Google Scholar 

  • Dachler, R. 1936. Grundwasserströmung (Flow of Groundwater). Julius Springer, Vienna, Austria [as cited by Hvorslev 1951].

  • Dahl, T. E. 1990. Wetlands: Losses in the United States, 1780’s to 1980’s. U. S. Fish and Wildlife Service Report to Congress, Washington, DC, USA.

    Google Scholar 

  • Dasberg, S. and S. P. Neuman. 1977. Peat hydrology in the Hula Basin, Israel: I. Properties of peat. Journal of Hydrology 32:219–239.

    Article  CAS  Google Scholar 

  • Dickson, J. H. 1973. Bryophytes of the Pleistocene. Cambridge University Press, London, UK.

    Google Scholar 

  • Drever, J. I. 1988. The Geochemistry of Natural Waters, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Eggelsmann, R. and M. Schuch 1976. Moorhydrologie. p. 153–162.In K. Göttlich (ed.) Moor- und Torfkunde. Schweizer-bart’sche, Stuttgart, Germany [as cited by Ingram 1983].

  • Eggers, S. D. and D. M. Reed. 1987. Wetland Plants and Plant Communities of Minnesota and Wisconsin. U. S. Army Corps of Engineers, St. Paul, MN, USA.

    Google Scholar 

  • Freeze, R. A. and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Gat, J. R. 1980. The isotopes of hydrogen and oxygen in precipitation. p. 21–47.In P. Fritz and J. Ch. Fontes (eds.) Handbook of Environmental Isotope Geochemistry. Elsevier, New York, NY, USA.

    Google Scholar 

  • Gilvear, D. J., R. Andrews, J. H. Tellam, J. W. Lloyd, and D. N. Lerner. 1993. Quantification of the water balance and hydrogeological processes in the vicinity of a small groundwater-fed wetland, East Anglia, UK. Journal of Hydrology 144:311–334.

    Article  Google Scholar 

  • Glaser, P. H. 1992. Vegetation and water chemistry. p. 15–26.In H. E. Wright, Jr., B. A. Coffin, and N. E. Aaseng (eds.) The Patterned Peatlands of Minnesota. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Glaser, P. H., D. I. Siegel, E. A. Romanowicz, and Y. P. Shen. 1997. Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. Journal of Ecology 85:3–16.

    Article  Google Scholar 

  • Heinselman, M. L. 1970. Landscape evolution, peatland types, and the environment in the Lake Agassiz Peatlands Natural Area, Minnesota. Ecological Monographs 40:235–261.

    Article  Google Scholar 

  • Helsel, D. R. and R. M. Hirsch. 1992. Statistical Methods in Water Resources. Elsevier, New York, NY, USA.

    Google Scholar 

  • Hemond, H. F. and J. C. Goldman. 1985. On non-Darcian water flow in peat. Journal of Ecology 73:579–584.

    Article  Google Scholar 

  • Hvorslev, M. J. 1951. Time lag and soil permeability in groundwater observations. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA. Bulletin No. 36.

    Google Scholar 

  • Hyder, Z. and J. J. Butler. 1995. Slug tests in unconfined formations: An assessment of the Bouwer and Rice technique. Ground Water 33:16–22.

    Article  CAS  Google Scholar 

  • Hyder, Z., J. J. Butler, C. D. McElwee, and W. Liu. 1994. Slug tests in partially penetrating wells. Water Resources Research 30:2945–2957.

    Article  Google Scholar 

  • Ingram, H. A. P. 1983. Hydrology. p. 67–158.In A. J. P. Gore (ed.) Mires: Swamp, Bog, Fen and Moor-General Studies. Elsevier, New York, NY, USA.

    Google Scholar 

  • Janssens, J. A. and M. G. Noble. 1996. Final report on the baseline vegetation survey of the Sioux Nation Fen complex, Yellow Medicine County, Minnesota. Report to the Minnesota Department of Natural Resources, Division of Waters. St. Paul, MN, USA.

  • Koerselman, W. 1979. Groundwater and surface water hydrology of a small groundwater-fed fen. Wetlands Ecology and Management 1:31–43.

    Google Scholar 

  • Komor, S. C. 1994. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA. Geochimica et Cosmochimica Acta 58:3353–3367.

    Article  CAS  Google Scholar 

  • Kratz, T. K., M. J. Winkler, and C. B. DeWitt. 1981. Hydrology and chronology of a peat mound in Dane County, southern Wisconsin. Transactions of the Wisconsin Academy of Sciences, Arts, and Letters 69:37–45.

    Google Scholar 

  • Leete, J. H. 1994. Minnesota defends fens. Water, Environment, and Technology 6:24–25.

    Google Scholar 

  • Leete, J. H. and T. Gullett. 1989. Innovative approach to fen protection-Irrigate! Minnesota Ground Water Association Newsletter 8:6–7.

    Google Scholar 

  • Lent, R. M., P. K. Weiskel, F. P. Lyford, and D. S. Armstrong. 1997. Hydrologic indices for nontidal wetlands. Wetlands 17:19–30.

    Article  Google Scholar 

  • Malterer, T. J., J. P. Bluemle, A. J. Duxbury, B. L. Heidel, and C. Godfread. 1988. Peat initiation and accumulation during the Holocene, Denbigh Fen, McHenry County, North Dakota. North Dakota Academy of Science Proceedings 42:30.

    Google Scholar 

  • Mathur, S. P. and M. Lévesque. 1985. Negative effect of depth on saturated hydraulic conductivity of histosols. Soil Science 140:462–466.

    Article  Google Scholar 

  • Minnesota Department of Natural Resources [MDNR]. 1993. Minnesota’s native vegetation: A key to natural communities, version 1.5. Minnesota Department of Natural Resources, St. Paul, MN, USA.

    Google Scholar 

  • Minnesota Department of Natural Resources [MDNR]. 1995. Technical criteria for identifying and delineating calcareous fens in Minnesota. Minnesota Department of Natural Resources, St. Paul, MN, USA.

    Google Scholar 

  • Minnesota Geological Survey. 1966. Geologic map of Minnesota: St. Paul sheet (1:250,000-scale map). Minnesota Geological Survey, St. Paul, MN, USA.

    Google Scholar 

  • Minnesota Geological Survey. 1970. Geologic map of Minnesota: New Ulm sheet (1:250,000-scale map). Minnesota Geological Survey. St. Paul, MN, USA.

    Google Scholar 

  • Moore, P. D. and D. J. Bellamy. 1974. Peatlands. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Novitzki, R. P., W. A. Van Voast, and L. A. Jerabek. 1969. Water resources of the Yellow Medicine River watershed, southwestern Minnesota. U. S. Geological Survey Hydrologic Investigations Atlas HA-320.

  • Olsen, B. M. and J. H. Mossler. 1982. Geologic map of Minnesota: Depth to bedrock (1:1,000,000-scale map). Map S-14, Minnesota Geological Survey, St. Paul, MN, USA.

    Google Scholar 

  • Reardon, E. J., A. A. Mozeto, and P. Fritz. 1980. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution. Geochimica et Cosmochimica Acta 44:1723–1735.

    Article  CAS  Google Scholar 

  • Reynolds, W. D., D. Ann Brown, S. P. Mathur, and R. P. Overend. 1992. Effect of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Science 153:397–408.

    Article  CAS  Google Scholar 

  • Ruhl, J. F. 1987. Hydrogeologic and water-quality characteristics of glacial-drift aquifers in Minnesota. U. S. Geological Survey Water-Resources Investigations Report 87-4224.

  • Shedlock, R. J., D. A. Wilcox, T. A. Thompson, and D. A. Cohen. 1993. Interactions between ground water and wetlands, southern shore of Lake Michigan, USA. Journal of Hydrology 141:127–155.

    Article  CAS  Google Scholar 

  • Strack, O. D. L. 1989. Groundwater Mechanics. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Thompson, C. A. 1993. Hydrogeology of Iowa fens. Ph.D. Dissertation. University of Iowa, Iowa City, IA, USA.

    Google Scholar 

  • Thompson, C. A., E. A. Bettis, III, and R. G. Baker. 1992. Geology of Iowa fens. Journal of the Iowa Academy of Science 99:53–59.

    Google Scholar 

  • Truesdell, A. H. and B. F. Jones. 1974. WATEQ, a computer program for calculating chemical equilibria of natural waters. U. S. Geological Survey Journal of Research 2: 233–274.

    CAS  Google Scholar 

  • Tukey, J. W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA, USA.

    Google Scholar 

  • van der Valk, A. G. 1975. Floristic composition and structure of fen communities in northwest Iowa. Proceedings of the Iowa Academy of Science 82:113–118.

    Google Scholar 

  • van der Valk, A. G. 1976. Zonation, competitive displacement and standing crop of northwest Iowa fen communities. Proceedings of the Iowa Academy of Science 83:51–54.

    Google Scholar 

  • Wilcox, D. A., R. J. Shedlock, and W. H. Hendrickson. 1986. Hydrology, water chemistry and ecological relations in the raised mound of Cowles Bog. Journal of Ecology 74:1103–1117.

    Article  Google Scholar 

  • Winter, T. C. 1988. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management 12:605–620.

    Article  Google Scholar 

  • Wright, H. E., Jr. 1972. Physiography of Minnesota. p. 561–578.In P. K. Sims and G. B. Morey (eds.) Geology of Minnesota: A Centennial Volume. Minnesota Geological Survey, St. Paul, MN, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almendinger, J.E., Leete, J.H. Regional and local hydrogeology of calcareous fens in the Minnesota River basin, USA. Wetlands 18, 184–202 (1998). https://doi.org/10.1007/BF03161655

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161655

Key Words

Navigation