Skip to main content
Log in

Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Localized patterns of the quintic Swift-Hohenberg equation are studied by bifurcation analysis and rigorous numerics. First of all, fundamental bifurcation structures around the trivial solution are investigated by a weak nonlinear analysis based on the center manifold theory. Then bifurcation structures with large amplitude are studied on Galerkin approximated dynamical systems, and a relationship between snaky branch structures of saddle-node bifurcations and localized patterns is discussed. Finally, a topological numerical verification technique proves the existence of several localized patterns as an original infinite dimensional problem, which are beyond the local analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. J. Budd, G.W. Hunt and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load. Proc. R. Soc. Lond. A,457 (2001), 2935.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Conley, Isolated Invariant Sets and the Morse Index. CBMS Lecture Notes38, A.M.S. Providence, R.I. 1978.

    Google Scholar 

  3. S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. Submitted.

  4. S. Day, O. Junge and K. Mischaikow, A rigorous numerical method for the global analysis of infinite dimensional discrete dynamical systems. In preparation.

  5. L.Yu. Glebsky and L.M. Lerman, On small stationary localized solutions for the generalized 1-D Swift-Hohenberg equation. Chaos,5 (1995), 424.

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. Hiraoka, T. Ogawa and K. Mischaikow, Conley index based numerical verification method for global bifurcations of the stationary solutions to the Swift-Hohenberg equation. Trans. Japan Soc. Indust. Appl. Math.,13, No. 2 (2003) 191.

    Google Scholar 

  7. G. Iooss and M.C. Pérouéme, Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Diff. Eq.,102 (1993), 62.

    Article  MATH  Google Scholar 

  8. H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems. Springer-Verlag. Notes by A.K. Nandakumaran and Mythily Ramaswamy, Indian Institute of Science, Bangalore. 1987.

  9. R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo and M. Rauch, C-XSC: A C++ Class Library for Extended Scientific Computing. Springer-Verlag, 1993.

  10. A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains—existence and comparison. Nonlinearity,8 (1995), 743.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Nishiura, Far-from-Equilibrium Dynamics. AMS Translations of Mathematical Monographs209, 2002.

  12. S. Oishi and M. Rump, Fast verification of solutions of matrix equations. Numer. Math.,90 (2002), 755.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Orszag, Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Math.,50 (1971), 293.

    MATH  MathSciNet  Google Scholar 

  14. H. Sakaguchi and H.R. Brand, Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation. Physica D,97 (1996), 274.

    Article  Google Scholar 

  15. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets. Trans. Amer. Math. Soc.,291 (1985), 1.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions. Dynamics Reported125, Springer-Verlag, 1992.

  17. M.K. Wadee, C.D. Coman and A.P. Bassom, Solitary wave interaction phenomena in a strut buckling model incorporating restabilisation. Physica D,163 (2002), 26.

    Article  MATH  MathSciNet  Google Scholar 

  18. P.D. Woods and A.R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation. Physica D,129 (1999), 147.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation. Found. Comput. Math., 1 (2001), 255.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hiraoka, Y., Ogawa, T. Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation. Japan J. Indust. Appl. Math. 22, 57 (2005). https://doi.org/10.1007/BF03167476

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167476

Key words

Navigation