Skip to main content
Log in

Steady fall of bodies of arbitrary shape in a second-order fluid at zero reynolds number

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study the slow motion of rigid bodies of arbitrary shape sedimenting in a quiescent viscoelastic liquid under the action of gravity. The liquid is modeled by the second-order fluid equations. We show existence of steady state solutions for small Weissenberg numbers. The case of pure translational motions is analyzed for specific geometric symmetries of the body and this allows us to show that the sedimentation behavior can be dramatically different between Newtonian and viscoelastic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Bird and R.C. Armstrong, Dynamics of Polymeric Fluids (Volume 1). Wiley-Interscience Publications, 1987.

  2. H. Brenner, The Stokes resistance of an arbitrary particle II. Chem. Engng. Sci.,19 (1964), 599–624.

    Article  Google Scholar 

  3. P. Brunn, The motion of a rigid particle in a second order fluid. J. Fluid Mech.,82 (1977), 529–550.

    Article  MATH  Google Scholar 

  4. K. Chiba, K. Song and A. Horikawa, Motion of a slender body in quiescent polymer solutions. Rheology Acta,25 (1986), 380–388.

    Article  Google Scholar 

  5. K. Cho, Y.I. Cho and N.A. Park, Hydrodynamics of a vertically falling thin cylinder in non-Newtonian fluids. J. Non-Newtonian Fluid Mech.,45 (1992), 105–145.

    Article  MathSciNet  Google Scholar 

  6. A.T. Chwang and T.Y. Wu, Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech.,67 (1975), 787–815.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.G. Cox, The steady motion of particles of arbitrary shape at small Reynolds number. J. Fluid Mech.,23 (1965), 625–643.

    Article  Google Scholar 

  8. J.E. Dunn and R.L. Fosdick, Thermodynamics and stability of non-linear fluids. Arc. Rat. Mech.,56 (1974), 191.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.P. Galdi, Slow motion of a body in a viscous incompressible fluid with applications to particle sedimentation. Recent Developments in Partial Differential Equations, Quaderni Di Matematica2, 1998, 1–35.

    MathSciNet  Google Scholar 

  10. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations (Vol 1, 2nd Corrected Edition). Springer Verlag, 1998.

  11. G.P. Galdi, Slow steady fall of rigid bodies in a second-order fluid. J. Non-Newtonian Mech.,93 (2000), 169–177.

    Article  Google Scholar 

  12. G.P. Galdi and A. Vaidya, Translational steady fall of symmetric bodies in Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech.,3 (2001), 183–211.

    Article  MATH  MathSciNet  Google Scholar 

  13. G.P. Galdi, M. Pokorny, A. Vaidya, D.D. Joseph and J. Feng, Orientation of bodies sedimenting in a second-order liquid at non-zero Reynolds number. Models and Math. Meth. Appl. Sci.,12 (2002), 1653–1692.

    Article  MATH  MathSciNet  Google Scholar 

  14. G.P. Galdi, On the motion of a rigid body in a viscous fluid: A mathematical analysis with applications. Handbook of Mathematical Fluid Mechanics (Vol. 1), North-Holland, 2002, 653–791.

  15. H. Giesekus, Die Simultane Translations and Rotations Bewegung einer Kugel in einer Elastovisken Flussigkeit. Rheology Acta,3 (1963), 59–71.

    Article  Google Scholar 

  16. V. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Prentice Hall, 1965.

  17. H. Hu and D.D. Joseph, Lift on a sphere near a wall in a second order fluid. J. Non-Newtonian Fluid Mech.,88 (1999), 173–184.

    Article  MATH  Google Scholar 

  18. D.D. Joseph and Y.J. Liu, Orientation of long bodies falling in a viscoelastic fluid, J. Rheology,37 (1993), 961–983.

    Article  MathSciNet  Google Scholar 

  19. D.D. Joseph, Flow induced microstructures in Newtonian and viscoelastic fluids. Proceedings of the 5th World Congress of Chemical Engineering6, 1996, 3–16.

  20. D.D. Joseph and J. Feng, A note on forces that move particles in a second-order fluid. J. Non-Newtonian Fluid Mech.,64 (1996), 299–302.

    Article  Google Scholar 

  21. D.D. Joseph, Interrogations of Direct Numerical Simulation of Solid-Liquid Flow. http://www.aem.umn.edu/people/faculty/joseph/interrogation.html, 2000.

  22. S. Kim, The motion of ellipsoids in a second order fluid. J. Non-Newtonian Fluid Mech.,21 (1986), 255–269.

    Article  MATH  Google Scholar 

  23. H. Lamb, Hydrodynamics. Cambridge University Press, 1932.

  24. L.G. Leal, The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech.,69 (1975), 305–337.

    Article  MATH  Google Scholar 

  25. L.G. Leal, Particle motion in a viscous liquid. Annual Rev. Fluid Mech.,12 (1980), 435–476.

    Article  MathSciNet  Google Scholar 

  26. Y.J. Liu and D.D. Joseph, Sedimentation of particles in polymer solutions. J. Fluid Mech.,255 (1993), 565–595.

    Article  Google Scholar 

  27. E.A. Pettyjohn and E.B. Christiansen, Effect of particle shape on free-settling rates of isometric particles. Chem. Eng. Prog.,44 (1948), 526.

    Google Scholar 

  28. D. Serre, Chute Libre d’un Solide dans un Fluide Visqueux Incompressible. Jpn. J. Appl. Math.,4 (1987), 99–110.

    Article  MATH  MathSciNet  Google Scholar 

  29. H.F. Weinberger, Variational properties of steady fall in Stokes flow. J. Fluid Mech.,52 (1972), 321–344.

    Article  MATH  MathSciNet  Google Scholar 

  30. H.F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid. Proc. Symp. Pure Mathematics23, 1973, 421–440.

    Google Scholar 

  31. H.F. Weinberger, Variational principles for a body falling in a steady Stokes flow. Proc. Symp. on Continuum Mechanics and Related Problems of Analysis2, 1974, 330–339.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Vaidya.

About this article

Cite this article

Vaidya, A. Steady fall of bodies of arbitrary shape in a second-order fluid at zero reynolds number. Japan J. Indust. Appl. Math. 21, 299–321 (2004). https://doi.org/10.1007/BF03167585

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167585

Key words

Navigation