Skip to main content
Log in

Identification ofStreptomyces sp. Tc022, an endophyte inAlpinia galanga, and the isolation of actinomycin D

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Some endophytic actinomycetes (120) were isolated from the roots ofAlpinia galanga. Identification of these endophytes was based on their morphology and amino acid composition of the whole-cell extract. Most isolates were classified aStreptomyces sp. (82), with the remainder belonging toNocardia sp. (11),Microbispora sp. (3) andMicromonospora sp. (2). Eight isolates were unclassified and 14 were lost during subculture. The strain identified as endophyticStreptomyces sp. Tc022 strongly inhibitedColletotrichum musae andCandida albicans. This endophyte was cultured, the agar was extracted with organic solvent and the extract was purified on a column of silica gel to give a major component, which was identified to be actinomycin D on the basis of spectroscopic dat Actinomycin D showed antifungal activity againstColletotrichum musae andCandida albicans with the MIC of 10 and 20 mg ml−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul S.F., Madden T.L., Schaffer A.A. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25: 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  • Arison B.H., Hoogsteen K. (1970). Nuclear Magnetic Resonance spectral studies on actinomycin D. Preliminary observations on the effect of complex formation with 5′-deoxyguanylic acid. Biochemistry, 9: 3976–3983.

    Article  CAS  PubMed  Google Scholar 

  • Becker B., Lechevalier M.P., Gordon R.E., Lechevalier H.A. (1964). Rapid differentiation betweenNocardia andStreptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol., 12: 421–423.

    CAS  PubMed  Google Scholar 

  • Boone C.J., Pine L. (1968). Rapid method for characterization of actinomycetes by cell wall composition. Appl. Microbiol., 16: 279–284.

    CAS  PubMed  Google Scholar 

  • Brosius J., Palmer M.L., Kennedy P.J., Noller H.F. (1978). Complete nucleotide sequence of a 16S ribosomal RNA gene fromEscherichia coli. Proc. Natl. Acad. Sci. USA., 75: 4801–4805.

    Article  CAS  PubMed  Google Scholar 

  • Castillo U., Harper J.K., Strobel G.A., Sears J., Alesi K., Ford E.J., Lin J., Hunter M., Maranta M., Ge H., Yaver D., Jensen J.B., Porter H., Robison R., Millar D., Hess W.M., Condron M.A., Teplow D.B. (2003). Kakadumycins, novel antibiotics fromStreptomyces sp. NRRL 30566, an endophyte ofGrevillea pteridifolia. FEMS Microbiol. Lett., 224: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Castillo U.F., Strobel G.A., Ford E.J., Hess W.M., Porter H., Jensen J.B., Albert H., Robison R., Condron M.A., Teplow D.B., Stevens D., Yever D. (2002). Munumbicins, wide-spectrum antibiotics produced byStreptomyces NRRL 30562, endophytic onKennedia nigriscans. Microbiology, 148: 2675–2685.

    CAS  PubMed  Google Scholar 

  • Felsenstein J. (1995). PHYLIP (phylogenetic inference package) version 3.57c. Department of Genetics, University of Washington, Seattle, WA, USA.

    Google Scholar 

  • Higgins D.G., Bleasby A.J., Fuchs R., (1992). CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci., 8: 189–191.

    CAS  PubMed  Google Scholar 

  • Hollstein U., Breitmaier E., Jung G. (1974).13C Nuclear Magnetic Resonance study of actinomycin D. J. Amer. Chem. Soc., 96: 8036–8040.

    Article  CAS  Google Scholar 

  • Hopwood D.A., Bibb M.J., Chater K.F. (1985). Preparation of chromosomal, plasmid and phage DNA. In: Hopwood D.A., Bibb M.J., Chater K.F., Eds, Genetic Manipulation ofStreptomyces: A Laboratory Manual, F. Crowe and Sons, Norwich, pp. 79–80.

    Google Scholar 

  • Lackner H. (1971). Zur Seundar- und tertiarstruktur der actinomycine, III Selektiv im (a)- oder (b)-peptidlactonring deuterierte actinomycine C1 (D). Tetrahedron Lett., 37: 2221–2226.

    Article  Google Scholar 

  • Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473–479.

    Article  CAS  Google Scholar 

  • NCCLS — National Committee for Clinical Laboratory Standards (1997). Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. National Committee for Clinical Laboratory Standards, Wayne, Pa.

    Google Scholar 

  • Otoguro M., Hayakawa M., Yamazaki T., Iimura Y. (2001). A integrated method for the enrichment and selective isolation ofActinokineospora spp. in soil and plant litter. J. Appl. Microbiol., 91: 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Petrolini B., Quaroni S., Saracchi M. (1986). Scanning electron microscopy investigations on the relationships between bacteria and plant tissues: Comparative techniques for specimen preparation. Riv. Patol. Veg., 22: 7–15.

    Google Scholar 

  • Sardi P., Saracchi M., Quaroni S., Petrolini B., Borgonovi G.E., Merli S. (1992). Isolation of endophyticStreptomyces from surface-sterilized roots. Appl. Environ. Microbiol., 58: 2691–2693.

    PubMed  CAS  Google Scholar 

  • Shimizu M., Nakagawa Y., Sato Y., Furumai T., Igarashi Y., Onaka H., Yoshida R., Kunoh H. (2000). Studies on endophytic actinomycetes (I)Streptomyces sp. isolated fromRhododendron and its antifungal activity. J. Gen. Plant Pathol., 66: 360–366.

    Article  CAS  Google Scholar 

  • Shirling E.B., Gottlieb D. (1966). Methods for characterization ofStreptomyces species. Int. J. Syst. Bacteriol., 16: 313–340.

    Article  Google Scholar 

  • Taechowisan T., Lumyong S. (2003). Activity of endophytics actinomycetes from roots ofZingiber officinale andAlpinia galanga against phytopathogenic fungi. Ann. Microbiol., 53: 291–298.

    Google Scholar 

  • Taechowisan T., Peberdy J.F., Lumyong S. (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol., 19: 381–385.

    Article  CAS  Google Scholar 

  • Taechowisan T., Lu C., Shen Y., Lumyong S. (2005). 4-Arylcoumarins from endophyticStreptomyces aureofaciens CMUAc130 and their antifungal activity. Ann. Microbiol., 55: 63–66.

    CAS  Google Scholar 

  • Thomas P. (1998). Contribution of leaf lamina of grape nodal microcuttings to rooting, root vigor and plantlet growthin vitro. J. Plant Physiol., 153: 727–732.

    CAS  Google Scholar 

  • Yang X., Strobel G., Stierle A., Hess W.M., Lee J., Clardy J. (1994). A fungal endophyte-tree relationship;Phoma sp. inTaxus wallichana. Plant Sci., 102: 1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thongchai Taechowisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taechowisan, T., Wanbanjob, A., Tuntiwachwuttikul, P. et al. Identification ofStreptomyces sp. Tc022, an endophyte inAlpinia galanga, and the isolation of actinomycin D. Ann. Microbiol. 56, 113–117 (2006). https://doi.org/10.1007/BF03174991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03174991

Key words

Navigation