Skip to main content
Log in

Genesis of zircon and its constraints on interpretation of U-Pb age

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Zircon U-Pb dating is the most commonly used method for isotopic geochronology. However, it has been a difficult issue when relating zircon U-Pb ages to metamorphic conditions in complex metamorphic rocks. Much progress has been made in the past decade with respect to the genesis of zircon and its constraints on interpretation of U-Pb age. Three methods have been proposed to link zircon U-Pb age to metamorphic conditions: (i) internal structure; (ii) trace element feature; (iii) mineral inclusion composition. Magmatic zircon shows typical oscillatory zoning and/or sector zoning, whereas metamorphic zircon has internal structures such as no zoned, weakly zoned, cloudy zoned, sector zoned, planar zoned, and patched zoned ones. Zircons formed in different geological environments generally have characteristic internal structures. Magmatic zircons from different rock types have variable trace element abundances, with a general trend of increasing trace element abundances in zircons from ultramafic through mafic to granitic rocks. Zircons formed under different metamorphic conditions have different trace element characteristics that can be used to relate their formation to metamorphic conditions. It is an effective way to relate zircon growth to certain P-T conditions by studying the trace element partitioning between coexisting metamorphic zircon and garnet in high-grade metamorphic rocks containing both zircon and garnet. Primary mineral inclusions in zircon can also provide unambiguous constraints on its formation conditions. Therefore, interpretation of zircon U-Pb ages can be constrained by its internal structure, trace element composition, mineral inclusion and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J., Williams, I., Ellis, D., Pb, U. and Th diffusion in nature zircon, Nature, 1997, 390(13): 159–162

    Article  Google Scholar 

  2. Cherniak, D. J., Watson, E. B., Pb diffusion in zircon, Chemical Geology, 2000, 172: 5–24.

    Article  Google Scholar 

  3. Compston, W., Williams, I. S., Kirschvink, J. L. et al., Zircon U-Pb ages for the Early Cambrian time-scale, J. of Geological Society, London, 1992, 149: 171–184.

    Article  Google Scholar 

  4. Ireland, T. R., Williams, I. S., Considerations in zircon geochronology by SIMS, Zircon Reviews in Mineralogy and Geochemistry, 2003, 53: 215–238.

    Article  Google Scholar 

  5. Williams, I. S., U-Th-Pb geochronology by ion microprobe, in Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds. McKibben, M. A., Shanks, W. C., Ridley, W. I.), Review of Economical Geology, 1998, 7: 1–35.

  6. Liang, X., Li, X., Liu, Y., Simultaneous determination of U-Pb ages and trace elements in single zircon by using LAM-ICP-MS, Rock and Mineral Analysis (in Chinese with English abstract), 1999, 18(4): 253–258.

    Google Scholar 

  7. Yuan Honglin, Wu Fuyuan, Gao Shan et al., LA-ICPMS zircon U-Pb dating and REE analysis from Cenozoic intrusions in northeast region, China, Chinese Sci. Bull., 2003, 48(22): 2411–2421.

    Google Scholar 

  8. Feng, R., Machado, N., Ludden, J., Lead geochronology of zircon by laser-inductively coupled plasma mass spectrometry (ICP-MS), Geochim. Cosmochim. Acta, 1993, 57: 3479–3486.

    Article  Google Scholar 

  9. Fryer, D., Jackson, S., Longerich, H., The application of laser ablation micro-probe-inductively couple plasma mass spectormetry (LAM-ICP-MS) toin situ (U)-Pb geochronology, Chemical Geology, 1993, 109: 1–8.

    Article  Google Scholar 

  10. Horn, I., Rudnick, R. L., Mcdonough, W. F., Precise element and isotope ratio measurement by simultaneous solution nebulisation and laser ablation-ICP-MS: Application to U-Pb geochronology, Chem. Geol., 2000, 164: 281–301.

    Article  Google Scholar 

  11. Kosler, J., Sylvester, P. J., Present trends and the future of zircon in geochronology: Laser ablation ICPMS, Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 243–271.

    Article  Google Scholar 

  12. Hanchar, J. M., Hoskin, P. W. O., Zircon, Reviews in Mineralogy and Geochemistry, 2003, 53: V-VII.

    Article  Google Scholar 

  13. Müller, W., Strengthening the link between geochronology, textures and petrology, Earth and Planetary Science Letters, 2003, 206: 237–251.

    Article  Google Scholar 

  14. Gebauer, D., Schertl, H. P., Brix, M. et al., 35 Ma old ultrahighpressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Wester Alps. Lithos., 1997, 41: 5–24.

    Google Scholar 

  15. Hacker, B. R., Ratshbacher, L., Webb, L. et al., U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci. Lett., 1998, 161: 215–230.

    Article  Google Scholar 

  16. Hermann, J., Rubatto, D., Korsakov, A., Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan), Contrib. Mineral Petrol., 2001, 141: 66–82.

    Google Scholar 

  17. Katayama, I., Maruyama, S., Parkinson, C. D., Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan, Earth and Planetary Science Letters, 2001, 188: 185–198.

    Article  Google Scholar 

  18. Mojzsis, S. J., Harrison, T. M., Pidgeon, R. T., Oxygen isotope evidence from ancient zircons for liquid water at the earth’s surface 4300 Myr ago, Nature, 2001, 409: 178–181.

    Article  Google Scholar 

  19. Rubatto, D., Gebauer, D., Fanning, M., Jurassic formation and Eocene subductions for the geodynamic evolution of the Central and Western Alps, Contrib. Mineral. Petrol., 1998, 132: 269–287.

    Article  Google Scholar 

  20. Rubatto, D., Gebauer, G., Compagnoni, R., Dating of eclogitefacies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps), Earth and Planetary Science Letters, 1999, 167: 141–158.

    Article  Google Scholar 

  21. Rubatto, D., Williams, I. S., Imaging, trace element geochemistry and mineral inclusions: linking U-Pb ages with metamorphic conditions, EOS, 2000, 21: 25.

    Google Scholar 

  22. Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism, Chemical Geology, 2002, 184: 123–138.

    Article  Google Scholar 

  23. Rubatto, D., Hermann, J., Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones, Geochimica et Cosmochimica Acta, 2003, 67(12): 2173–2187.

    Article  Google Scholar 

  24. Schaltegger, U., Fanning, C. M., Gunther, D. et al., Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional andin-situ U-Pb isotope, cathodoluminescence and microchemical evidence, Contrib. Mineral Petrol., 1999, 134: 186–201.

    Article  Google Scholar 

  25. Vavra, G., Gebauer, D., Schmid, R., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122: 337–358.

    Article  Google Scholar 

  26. Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: geochronology of the Ivren Zone(Southern Alps), Contrib. Mineral Petrol., 1999, 134: 380–404.

    Article  Google Scholar 

  27. Whitehouse, M. J., Kamber, B. S., On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation, Earth and Planetary Science Letters, 2002, 204: 333–346.

    Article  Google Scholar 

  28. Whitehouse, M. J., Platt, J. P., Dating high-grade metamorphismconstraints from rare-earth elements in zircons and garnet, Contrib. Mineral Petrol., 2003, 145: 61–74.

    Google Scholar 

  29. Wilde, S. A., Valley, J. W., Peck, W. H. et al., Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature, 2001, 409: 175–178.

    Article  Google Scholar 

  30. Pidgeon, R. T., Nemchin, A. A., Hitchen, G. J., Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages, Contrib. Mineral Petrol., 1998, 132: 288–299.

    Article  Google Scholar 

  31. Nasdala, L., Wenzel, M., Vavra, G. et al., Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contrib. to Mineral. and Petrol., 2001, 141: 125–144.

    Google Scholar 

  32. Hanchar, J. M., Miller, C. F., Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories, Chemical Geology, 1993, 110: 1–13.

    Article  Google Scholar 

  33. Hanchar, J. M., Rudnick, R. L., Revealing hidden structures: the application of cathodoluminescence and back-scatter electrical imaging to dating zircons from lower crustal xenoliths, Lithos., 1995, 36: 289–303.

    Article  Google Scholar 

  34. Crofu, F., Hanchar, J. M., Hoskin, P. W. O. et al., Atlas of zircon textures, Reviews in Mineralogy and Geochemistry, 2003, 53: 469–495.

    Article  Google Scholar 

  35. Rubatto, D., Gebauer, D., Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps, Cathodoluminescence in Geoscience, Berlin, Heidelberg: Springer-Verlag, 2000, 373–400.

    Google Scholar 

  36. Zhao, Zifu, Zheng Yongfei, Wei Chunsheng ET AL., Zircon U-Pb age, element and isotope geochemistry of mesozoic mafic-ultramafic rocks at Shacun and Jiaoziyan in North Dabie, Geological Journal of China Universities (in Chinese with English abstract), 2003, 9(2): 139–162.

    Google Scholar 

  37. Hoskin, P. W. O., Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 27–55.

    Article  Google Scholar 

  38. Belusova, E., Griffin, W., Pearson, N. J., Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons, Mineral Mag., 1998, 62: 355–366.

    Article  Google Scholar 

  39. Konzett, J., Armstrong, R. A., Sweeny, R. J. et al., The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths, Earth Planet Sci. Lett., 1998, 160: 133–145.

    Article  Google Scholar 

  40. Guo, J., O’Reilly, S. Y., Griffin, W. L., Zircon inclusions in corundum megacrystals, 1. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts, Geochem CosmochimActa, 1996, 60: 237–269.

    Google Scholar 

  41. Upton, B. G. J., Hinton, R. W., Aspen, P. et al., Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland, J. Petrol., 1999, 40: 935–956.

    Article  Google Scholar 

  42. Keay, S., Lister, G., Buick, I., The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece, Tectonophysics, 2001, 342: 275–312.

    Google Scholar 

  43. Roberts, M., Finger, F., Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 1997, 25(4): 319–322.

    Article  Google Scholar 

  44. Bingen, B., Austrheim, H., Whitehouse, M., Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology, J. Petrol., 2001, 42(2): 355–375.

    Article  Google Scholar 

  45. Fraser, G., Ellis, D., Eggins, S., Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks, Geology, 1997, 25(7): 607–610.

    Article  Google Scholar 

  46. Dubinskaa, E., Bylinab, P., Kozlowskia, A. et al., U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, S W Poland), Chemical Geology, 2004, 203: 183–203.

    Article  Google Scholar 

  47. Liati, A., Gebauer, D., Constraining the pregrade and regrade P-T-t path of Eocene HP rocks by SHRIMP dating difference zircon domain: inferred rated of heating-burial, cooling and exhumation for central Rhodope, northern Greece, Contrib. Minern. Petrol., 1999, 135: 340–354.

    Article  Google Scholar 

  48. Geisler, T., Ulonska, M., Schleicher, H. et al., Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions, Chemical Geology, 2001, 141: 53–65.

    Google Scholar 

  49. Hoskin, P. W. O., Black, L. P., Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorphic Geol., 2000, 18: 423–439.

    Article  Google Scholar 

  50. Pidgeon, R. T., Recrystallization of oscillatory-zoned zircon: some geochronological and petrological implications, Contrib. Mineral Petrol., 1992, 110: 463–472.

    Article  Google Scholar 

  51. Rizvanova, N. G., Lenchenkov, O. A., Belous, A. E. et al., Zircon reaction and stability of the U-Pb isotope system during the interaction with carbonate fluid: experimental hydrothermal study, Contrib. Mineral Petrol., 2000, 139: 101–134.

    Article  Google Scholar 

  52. Tomaschek, F., Kennedy, A. K., Villa, I. M. et al., Zircons from Syros, Cyclades, Greece-recrystallization and mobilization of zircon during high-pressure metamorphism, Jour. of Petrology, 2003, 44(11): 1977–2002.

    Article  Google Scholar 

  53. Liati, A., Gebauer, D., Wysoczanski, R., U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism, Chem. Geology, 2002, 184: 281–299.

    Article  Google Scholar 

  54. Möller, A., O’Brien, P. J., Kennedy, A. et al., Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway), EMU Notes in Mineralogy, 2003, 5: 65–82.

    Google Scholar 

  55. Mezger, K., Krogstad, E. J., Interpretation of discordant U-Pb zircon ages: An evaluation, J. Metamorphic Geol., 1997, 15: 127–140.

    Article  Google Scholar 

  56. Rowley, D. B., Xue, F., Tucker, R. D., Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Ph zircon geochronology, Earth and Planet Science Letters, 1997, 151: 191–203.

    Article  Google Scholar 

  57. Mojzsis, S. J., Harrison, T. M., Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland), Earth and Planetary Science Letters, 2002, 202: 563–576.

    Article  Google Scholar 

  58. Wu Yuanbao, Chen Daogong, Xia Qunke et al.,In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite— Trace element characteristics of eclogite-facies metamorphic zircon, Chin. Sci. Bull., 2002, 47(16): 1398–1401.

    Article  Google Scholar 

  59. Gebauer, D. A., P-T-t path for an (ultra-?) high-pressure ultramafic-mafic rockassociation and its felsic country-rocks based on SHRIMP—Dating of magmatic and metamorphic zircon domains, example: Alpe Arami (Central Swiss Alps), in Earth Processes Reading the Isotopic Code, Geophysical Monograph, 1996, 95: 307–329.

    Google Scholar 

  60. Hidaka, H., Shimizu, H., Adachi, M., U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance, Chem. Geol., 2002, 187: 278–293.

    Article  Google Scholar 

  61. Belousova, E., Griffin, W., Suzanne, Y., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral Petrol., 2002, 143: 602–622.

    Google Scholar 

  62. Hermann, J., Allanite: thorium and light rare earth element carrier insubducted crust, Chemical Geology, 2002, 192: 289–306.

    Article  Google Scholar 

  63. Nozhkin, A. D., Turkina, O. M., Radiogeochemistry of the charnokite-granulite complex, Sharyzhalgay Window, Siberian Platform, Geochem. Int., 1995, 32: 62–78.

    Google Scholar 

  64. Rollinson, H. R., Windley, B. F., Selective elemental depletion during metamorphism of Archean granulites, Contrib. Mineral. Petrol., 1980, 72: 257–263.

    Article  Google Scholar 

  65. Hoskin, P. W. O., Ireland, T., Rare earth element chemistry of zircon and its use as a provenance indicator, Geology, 2000, 28(7): 627–630.

    Article  Google Scholar 

  66. Peck, W. H., Valley, J., Wilde, S., Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for highδ18O continental crust and oceans in the Early Archean, Geochimica et Cosmochimica Acta, 2001, 65(22): 4215–4229.

    Article  Google Scholar 

  67. Valley, J. W., Peck, W. H., King, E. M., A cool early Earth, Geology, 2002, 30: 351–354.

    Article  Google Scholar 

  68. Wu Yuanbao, Chen Daogong, Xia Qunke et al.,In-situ trace element analyses and Pb-Pb dating of zircons by LAM-ICP-MS in granulite from Huangtuling, Dabieshan, Science in China, Series D, 2003, 46(11): 1161–1170.

    Article  Google Scholar 

  69. Rubatto, D., Liati, A., Gebauer, D., Dating UHP metamorphism, EMU Notes in Mineralogy, 2003, 5: 341–363.

    Google Scholar 

  70. Rudnick, R., Barth, M., Horn, I., Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle, Science, 2000, 287: 278–281.

    Article  Google Scholar 

  71. Whitehuse, M., Combingin situ zircon REE and U-Th-Pb geochronology: A petrogenetic dating tool, Journal of Conference Abstracts, 2000, 5(2): 1086.

    Google Scholar 

  72. Pidgeon, R. T., O’neil, J. R., Silver, R. T., The interdependence of U-Pb stability, crystallinity and external conditions in natural zircons—an early experimental study, Leon T Silver 70th Birthday Symposium and Celebration, extend abstract, 1995,225–231.

  73. Watson, B., Cherniak, D. J., Hanchar, J. M. et al., The incorporation of Pb into zircon, Chem. Geol., 1997, 141: 19–33.

    Article  Google Scholar 

  74. Liu, F., Xu, Z., Katayama, I., Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1,Chinese Continental Scientific Drilling Project, Lithos, 2001a, 59: 199–215.

    Article  Google Scholar 

  75. Liu, J., Ye, K., Maruyama, S., Mineral inclusions in zircon from gneisses in the Ultrahigh-pressure zone of the Dabie Mountains, China, Journal of Geology, 2001b, 109: 523–535.

    Article  Google Scholar 

  76. Tabata, H., Yamauchi, K., Maruyama, S., Tracing the extent of a UHP metamorphic terrane: mineral-inclusion study of zircons in gneisses from the Dabie Shan, in When Continents Collide: Geodynamics and Geochemistry of Ultra-High-Pressure Rocks (eds. Hacker, B., Liou, J.), Dordrecht: Kluwer, 1998, 261–274.

    Google Scholar 

  77. Ye, K., Yao, Y., Katayama, I., Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic geiss, Lithos, 2000, 52: 157–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbao Wu.

About this article

Cite this article

Wu, Y., Zheng, Y. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin.Sci.Bull. 49, 1554–1569 (2004). https://doi.org/10.1007/BF03184122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184122

Keywords

Navigation