Skip to main content
Log in

Flooding ecology of voles, mice and shrews: the importance of geomorphological and vegetational heterogeneity in river floodplains

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Since voles, mice and shrews are important animals in food chains of river floodplains, there is a need for data on their spatial and temporal distribution in periodically flooded areas. During a live trapping study between two successive floods in an embanked river floodplain, the ’Afferdensche en Deestsche Waarden (ADW)’, six species were frequently observed, viz,Microtus arvalis (Pallas, 1778),Clethrionomys glareolus (Schreber, 1780),Sorex araneus (Linnaeus, 1758),Crocidura russula (Hermann, 1780),Micromys minutus (Pallas, 1771) andApodemus sylvaticus (Linnaeus, 1758). Ungrazed rough herbaceous vegetation appeared to be rich in numbers and species, whereas no spoors of small mammals were observed in large parts of the ADW floodplain (eg bare substrates and maize fields). Vegetation structure seemed to be very important in guiding the recolonisation process after flood events. Throughout the year the highest numbers of small mammals were captured on and near the non-flooded elevated parts functioning as refugia during inundation. Poor habitat connectivity, sparseness of non-flooded recolonisation sources and small numbers of survivors led to slow recolonisation. The time between two successive floods (eight months) was not long enough for entire recolonisation of ADW. Small mammal densities at more than 30 m from the non-flooded areas were always lower than in non-flooded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrell J., Erlinge S., Nelson J. and Sandell M. 1992. Body weight and population dynamics: cyclic demography in a noncyclic population of the field vole (Microtus agrestis). Canadian Journal of Zoology 70: 494–501.

    Article  Google Scholar 

  • Alibhai S. K. and Gipps J. H. W. 1985. The population dynamics of bank voles. Symposia of the Zoological Society of London 55: 277–313.

    Google Scholar 

  • Andersen D. C., Wilson K. R., Miller M. S. and Falck M. 2000. Movement patterns of riparian small mammals during predictable floodplain inundation. Journal of Mammalogy 81: 1087–1099.

    Article  Google Scholar 

  • Andrzejewski R. and Babińska-Werka J. 1986. Bank vole populations: Are their densities really high and individual home range small? Acta Theriologica 31: 409–422.

    Google Scholar 

  • Bergstedt B. 1966. Home ranges and movements of the rodent speciesClethrionomys glareolus (Schreber),Apodemus flavicollis (Melchior) andApodemus sylvaticus (Linnaeus) in southern Sweden. Oikos 17: 150–157.

    Article  Google Scholar 

  • Boyce C. C. K. and Boyce III J. L. 1988a. Population biology ofMicrotus arvalis. II. Natal and breeding dispersal of females. Journal of Animal Ecology 57: 723–736.

    Article  Google Scholar 

  • Boyce C. C. K. and Boyce III J. L. 1988b. Population biology ofMicrotus arvalis. III. Regulation of numbers and breeding dispersion of females. Journal of Animal Ecology 57: 737–754.

    Article  Google Scholar 

  • Braun-Blanquet J., Fuller G. D. and Shoemaker Conard H. 1932. Plant sociology; the study of plant communities, 1st ed., McGraw-Hill Book Company, Inc., London: 1–439.

    Google Scholar 

  • Bujalska G. 1970. Reproduction stabilizing elements in an island population ofClethrionomys glareolus (Schreber 1780). Acta Theriologica 15: 381–412.

    Google Scholar 

  • Churchfield S. 1980. Population dynamics and the seasonal fluctuations in numbers of the common shrew in Britain. Acta Theriologica 25: 415–424.

    Google Scholar 

  • Crawley M. C. 1969. Movements and home ranges ofClethrionomys glareolus (Schreber) andApodemus sylvaticus L. in North-east England. Oikos 20: 310–319.

    Article  Google Scholar 

  • Crespin L., Verhagen R., Stenseth N. C., Yoccoz N. G., Prévot-Julliard A.-C. and Lebreton J.-D. 2002. Survival in fluctuating bank vole populations: seasonal and yearly variations. Oikos 98: 467–479.

    Article  Google Scholar 

  • Dickman C. R. 1975. Estimation of population density in the Common shrew,Sorex araneus, from a conifer plantation. Notes From The Mammal Society 41: 550–552.

    Google Scholar 

  • Erlinge S., Göransson G., Hansson L., Högstedt G., Liberg O., Nilsson I. N., Nilsson T., Von Schantz T. and Sylvén M. 1983. Predation as a regulating factor on small rodent populations in southern Sweden. Oikos 40: 36–52.

    Article  Google Scholar 

  • Favre L., Balloux F., Goudet J. and Perrin N. 1997. Female-biased dispersal in the monogamous mammalCrocidura russula: evidence from field data and microsatellite patterns. Proceedings of the Royal Society of London; Series B 264: 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Geuse P., Bauchau V. and Le Boulengé E. 1985. Distribution and population dynamics of bank voles and wood mice in a patchy woodland habitat in central Belgium. Acta Zoologica Fennica 173: 65–68.

    Google Scholar 

  • Gliwicz J. 1989. Individuals and populations of the bank vole in optimal, suboptimal and insular habitats. Journal of Animal Ecology 58: 237–247.

    Article  Google Scholar 

  • Gurnell J. and Flowerdew J. R. 1990. Live trapping small mammals. A practical guide. 2nd Edition. An occasional publication of The Mammal Society: no. 3, London, UK: 1–39.

  • Hanski I., Henttonen H., Korpimäki E., Oksanen L. and Turchin P. 2001. Small-rodent dynamics and predation. Ecology 82: 1505–1520.

    Article  Google Scholar 

  • Hansson L. 1997. Population growth and habitat distribution in cyclic small rodents: to expand or to change? Oecologia 112: 345–350.

    Article  Google Scholar 

  • Hendriks A. J., Ma W.-C., Brouns J. J., De Ruiter-Dijkman E. M. and Gast R. 1995. Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Archives of Environmental Contamination and Toxicology 29: 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen E. E. 2002. Small mammals: consequences of stochastic data variation for modeling indicators of habitat suitability for a well-studied resource. Ecological Indicators 1: 313–321.

    Article  Google Scholar 

  • Junk W. J., Bayley P. B. and Sparks R. E. 1989. The flood pulse concept in river-floodplain systems. [In: Proceedings of the International Large River Symposium. D. P. Dodge, ed]. Canadian Special Publication of Fisheries & Aquatic Sciences 106: 110–127.

  • Kikkawa J. 1964. Movement, activity and distribution of the small rodentsClethrionomys glareolus andApodemus sylvaticus in woodland. Journal of Animal Ecology 33: 259–299.

    Article  Google Scholar 

  • Kooistra L., Huijbregts M. A. J., Ragas A. M. J., Wehrens R. and Leuven R. S. E. W. 2005. Spatial variability and uncertainty in ecological risk assessment: a case study on the potential risk of cadmium for the little owl in a Dutch river floodplain. Environmental Science & Technology 39: 2177–2187.

    Article  CAS  Google Scholar 

  • Korn H. 1986. Changes in home range size during growth and maturation of the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Oecologia 69: 623–628.

    Article  Google Scholar 

  • Krištofik J. 1999. Small mammals in floodplain forests. Folia Zoologica 48: 173–184.

    Google Scholar 

  • Lange R., Twisk P., Van Winden A. and Van Diepenbeek A. 1994. [Mammals of Western Europe]. KNNV-uitgeverij, Utrecht, The Netherlands: 1–400. [In Dutch]

    Google Scholar 

  • Leuven R. S. E. W., Wijnhoven S., Kooistra L., De Nooij R. J. W. and Huijbregts M. A. J. 2005. Toxicological constraints for rehabilitation of riverine habitats: a case study for metal contamination of floodplain soils along the Rhine.Archiv für Hydrobiologie Suppl. 155: 657–676.

    CAS  Google Scholar 

  • Ma W.-C. and Talmage S. 2001. Insectivora. [In: Ecotoxicology of wild mammals. R. F. Shore and B. A. Rattne, eds]. John Wiley &Sons Ltd: 123–158.

  • Montgomery W. I. 1989. Population regulation in the wood mouse,Apodemus sylvaticus. I. Density dependence in the annual cycle of abundance. Journal of Animal Ecology 58: 465–475.

    Article  Google Scholar 

  • Myllymäki A. 1977a. Demographic mechanisms in the fluctuating populations of the field voleMicrotus agrestis. Oikos 29: 468–493.

    Article  Google Scholar 

  • Myllymäki A. 1977b. Interactions between the field voleMicrotus agrestis and its microtine competitors in Central-Scandinavian populations. Oikos 29: 570–580.

    Article  Google Scholar 

  • Nelson J. 1995. Intrasexual competition and spacing behaviour in male field voles,Microtus agrestis, under constant female density and spatial distribution. Oikos 73: 9–14.

    Article  Google Scholar 

  • Pachinger K. and Haferkorn J. 1998. Comparisons of the small mammal communities in floodplain forests at the Danube and Elbe rivers. Ekológia (Bratislava) 17: 11–19.

    Google Scholar 

  • Pelikán J., Zejda J. and Holišová V. 1974. Standing crop estimates of small mammals in Moravian forests. Zoologické Listy 23: 197–216.

    Google Scholar 

  • Pernetta J. C. 1976. Diets of the shrewsSorex araneus L. andSorex minutus L. in Wytham grassland. Journal of Animal Ecology 45: 899–912.

    Article  Google Scholar 

  • Pusenius J. and Schmidt K. A. 2002. The effects of habitat manipulation on population distribution and foraging behavior in meadow voles. Oikos 98: 251–262.

    Article  Google Scholar 

  • Randolph S. E. 1977. Changing spatial relationships in a population ofApodemus sylvaticus with the onset of breeding. Journal of Animal Ecology 46: 653–676.

    Article  Google Scholar 

  • Rudge M. R. 1968. The food of the common shrewSorex araneus L. (Insectivora: Soricidae) in Britain. Journal of Animal Ecology 37: 565–581.

    Article  Google Scholar 

  • Smyth M. 1966. Winter breeding in woodland mice,Apodemus sylvaticus, and voles,Clethrionomys glareolus andMicrotus agrestis, near Oxford. Journal of Animal Ecology 35: 471–485.

    Article  Google Scholar 

  • Southern H. N. 1965. Handbook of British Mammals. Mammal Society of the British Isles. Blackwell Scientific Publications, Oxford, UK: 1–465.

    Google Scholar 

  • Stelter C., Reich M., Grimm V. and Wissel C. 1997. Modelling persistence in dynamic landscapes: Lessons from a metapopulation of the grasshopperBryodema tuberculata. Journal of Animal Ecology 66: 508–518.

    Article  Google Scholar 

  • Szacki J. 1987. Ecological corridor as a factor determining the structure and organization of a bank vole population. Acta Theriologica 32: 31–44.

    Google Scholar 

  • Tapper S. 1979. The effect of fluctuating vole numbersMicrotus agrestis on a population of weaselsMustela nivalis on farmland. Journal of Animal Ecology 48: 603–617.

    Article  Google Scholar 

  • Ter Braak C. J. F. and Smilauer P. 1998. CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Centre for Biometry, Wageningen, The Netherlands.

    Google Scholar 

  • Van Apeldoorn R. C., Oostenbrink W. T., Van Winden A. and Van der Zee F. F. 1992. Effects of habitat fragmentation on the bank vole,Clethrionomys glareolus, in an agricultural landscape. Oikos 65: 265–274.

    Article  Google Scholar 

  • Van der Velde G., Leuven R. S. E. W. and Nagelkerken I. 2004. Types of river ecosystems. [In: Fresh surface water. Encyclopedia of life support systems (EOLSS). J. C. I. Dooge, ed]. Developed under the auspices of the UNESCO, EOLSS Publishers Co. Ltd., Oxford, UK: 1–29, (www.eolss.net).

    Google Scholar 

  • Ward J. V., Tockner K., Uehlinger U. and Malard F. 2001. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regulated Rivers: Research & Management 17: 311–323.

    Article  Google Scholar 

  • Wolff J. O. 1998. Behavioural model systems. [In: Landscape ecology of small mammals. G. W. Barrett and J. D. Peles, eds]. Springer: 11–40.

  • Wolton R. J. and Flowerdew J. R. 1985. Spatial distribution and movements of woodmice, yellownecked mice and bankvoles. Symposium of the Zoological Society of London 55: 249–275.

    Google Scholar 

  • Zandberg B. 1999. [’Afferdensche en Deestsche Waarden’ floodplain; Plan of arrangement]. Report 99.001. Directorate-General of Public Works and Water Management, Arnhem, The Netherlands. [In Dutch]

    Google Scholar 

  • Zejda J. 1976. The small mammal community of a lowland forest. Acta Scientiarum Naturalium Brno 10: 1–39.

    Google Scholar 

  • Zejda J. 1991. A community of small terrestrial mammals. [In: Floodplain forest ecosystem 1. M. Penka, M. Vyskot, E. Klimo and F. Vašièek, eds]. Elsevier: 357–371.

  • Zejda J. and Pelikán J. 1969. Movements and home ranges of some rodents in lowland forests. Zoologické Listy 18: 143–162.

    Google Scholar 

  • Zorn M. I., Van Gestel C. A. M. and Eijsackers H. 2005. Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. Pedobiologia 49: 189–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editors were Leszek Rychlik and Karol Zub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijnhoven, S., Van Der Velde, G., Leuven, R.S.E.W. et al. Flooding ecology of voles, mice and shrews: the importance of geomorphological and vegetational heterogeneity in river floodplains. Acta Theriol 50, 453–472 (2005). https://doi.org/10.1007/BF03192639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192639

Key words

Navigation