Skip to main content
Log in

RGD-Conjugated chitosan-pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGDCP was characterized by1H NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was 0.135 μg per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a > 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGDCP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydrogels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Park, J. S. Temenoff, T. A. Holland, Y. Tabata, and A. G. Mikos,Biomaterials,26, 7095 (2005).

    Article  CAS  Google Scholar 

  2. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson,New. Engl. J. Med.,331, 889 (1994).

    Article  CAS  Google Scholar 

  3. E. Bel, B. Ivarsson, and C. Merrill,Proc. Natl. Acad. Sci. USA,76, 1274 (1979).

    Article  Google Scholar 

  4. J. F. Hansbrough, D. Christine, and W. B. Hansbrough,J. Burn. Care. Rehabil.,13, 519 (1992).

    Article  CAS  Google Scholar 

  5. G. Khang, J. M. Rhee, P. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee,Macromol. Res.,10, 158 (2002).

    Article  CAS  Google Scholar 

  6. J. S. Park, J. M. Kim, S. J. Lee, S. G. Lee, Y. K. Jeong, S. E. Kim, and S. C. Lee,Macromol. Res.,15, 424 (2007).

    Article  CAS  Google Scholar 

  7. H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim,Macromol. Res.,15, 65 (2007).

    Article  CAS  Google Scholar 

  8. S. H. Lim, Y. Son, C. H. Kim, H. Shin, and J. I. Kim,Macromol. Res.,15, 370 (2007).

    Article  CAS  Google Scholar 

  9. B. L. Seal, T. C. Otero, and A. Panitch,Mater. Sci. Eng.,R34, 147 (2001).

    CAS  Google Scholar 

  10. Q. Hu, B. Li, M. Wang, and J. Shen,Biomaterials,25, 779 (2004).

    Article  CAS  Google Scholar 

  11. M. V. Risbud and R. R. Bhonde,Drug. Deliv.,7, 69 (2000).

    Article  CAS  Google Scholar 

  12. K. S. Chow and E. Khor,Biomacromolecules,1, 61 (2000).

    Article  CAS  Google Scholar 

  13. D. M. Albert, S. Michael, and V. R. Makarand,Biomaterials,26, 5983 (2005).

    Article  Google Scholar 

  14. M. Tatsuya, I. Norimasa, Y. Shintaro, F. Tadanao, M. Tokifumi, M. Akio, O. Noriko, O. Takashi, and N. Shin-Ichiro,Biomaterials,26, 5339 (2005).

    Article  Google Scholar 

  15. M. D. Pierschbacher and E. Ruoslahti,Nature,309, 30 (1984).

    Article  CAS  Google Scholar 

  16. E. Ruoslahti and M. D. Pierschbacher,Science,238, 491 (1987).

    Article  CAS  Google Scholar 

  17. S. P. Massia and J. A. Hubbell,Anal. Biochem.,187, 292 (1990).

    Article  CAS  Google Scholar 

  18. H. B. Lin, W. Sun, D. F. Mosher, C. Garcia-Echeverria, K. Schaufelberger, P. I. Lelkes, and S. L. Cooper,J. Biomed. Mater. Res.,28, 329 (1994).

    Article  CAS  Google Scholar 

  19. J. Graf, Y. Iwamoto, M. Sasaki, G. R. Martin, R. K. Kleinman, F. A. Robey, and Y. Yamada,Cell,48, 989 (1987).

    Article  CAS  Google Scholar 

  20. S. Jo, P. S. Engel, and A. G. Mikos,Polymer,41, 7595 (2000).

    Article  CAS  Google Scholar 

  21. K. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn,Macromol. Res.,13, 446 (2005).

    Article  CAS  Google Scholar 

  22. H. Ming-Hua, W. Da-Ming, H. Hsyue-Jen, L. Hwa-Chang, H. Tzu-Yang, L. Juin-Yoh, and H. Lein-Tuan,Biomaterials,26, 3197 (2005).

    Article  Google Scholar 

  23. B. A. Jason and A. S. Kristi,Biomaterials,23, 4315 (2002).

    Article  Google Scholar 

  24. H. J. Chung, D. H. Go, J. W. Bae, I. K. Jung, J. W. Lee, and K. D. Park,Curr. Appl. Phys.,5, 485 (2005).

    Article  Google Scholar 

  25. H. Ulrich, D. Claudia, and K. Horst,Biomaterials,24, 4385 (2003).

    Article  Google Scholar 

  26. A. Martinez-Ruvalcaba, E. Chornet, and D. Rodrigue,Carbohyd. Polym.,67, 586 (2007).

    Article  CAS  Google Scholar 

  27. D. R. Nisbet, K. E. Crompton, S. D. Hamilton, S. Shirakawa, R. J. Prankerd, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe,Biophys. Chem.,121, 14 (2006).

    Article  CAS  Google Scholar 

  28. C. Qing, W. Yuqing, B. Jianzhong, and W. Shenguo,Biomaterials,24, 3555 (2003).

    Article  Google Scholar 

  29. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Second edition, Saunders College Publishing, 1979, pp. 81–84.

  30. R. Jin, C. Hiemstra, Z. Zhong, and J. Feijen,Biomaterials,28, 2791 (2007).

    Article  CAS  Google Scholar 

  31. X. Jia, J. A. Burdick, J. Kobler, R. J. Clifton, J. J. Rosowski, S. M. Zeitels, and R. Langer,Macromolecules,37, 3239 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Dong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.M., Joung, Y.K., Park, K.D. et al. RGD-Conjugated chitosan-pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromol. Res. 16, 517–523 (2008). https://doi.org/10.1007/BF03218553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218553

Keywords

Navigation