Skip to main content
Log in

Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The effect of a multiwalled carbon nanotube (MWCNT) dispersion on the electrical, morphological and rheological properties of polycarbonate (PC)/MWCNT composites was investigated, with and without pretreating the MWCNTs with hydrogen peroxide oxidation and lyophilization. The resulting PC/treated MWCNT composites showed higher electrical conductivity than the PC/untreated MWCNT composites. The morphological behavior indicated the treated composites to have greater dispersion of MWCNTs in the PC matrix. In addition, the electromagnetic interference shielding efficiency (EMI SE) of the treated composites was higher than that of the untreated ones. Rheological studies of the composites showed that the complex viscosity of the treated composites was higher than the untreated ones due to increased dispersion of the MWCNTs in the PC matrix, which is consistent with the electrical conductivity, EMI SE and morphological studies of the treated composites. The latter results suggested that the increased electrical conductivity and EMI SE of the treated composites were mainly due to the increased dispersion of MWCNTs in the PC matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pötschke, A. R. Bhattacharyy, and A. Janke,Polymer,44, 8061 (2003).

    Article  Google Scholar 

  2. P. Pötschke, B. Kretzschmar, and A. Janke,Compos. Sci. Technol.,67, 855 (2007).

    Article  Google Scholar 

  3. S. H. Jin, D. K. Choi, and D. S. Lee,Colloid Surf. A,313, 242 (2008).

    Article  Google Scholar 

  4. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon,Carbon,43, 23 (2005).

    Article  Google Scholar 

  5. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey,Macromolecules,37, 9048 (2004).

    Article  CAS  Google Scholar 

  6. C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo,Macromol. Res.,14, 456 (2006).

    CAS  Google Scholar 

  7. B. S. Kim, K. D. Suh, and B. Kim,Macromol. Res.,16, 76 (2008).

    CAS  Google Scholar 

  8. A. Eitan, F. T. Fisher, R. Andrews, L. C. Brinson, and L. S. Schadler,Compos. Sci. Technol.,66, 1162 (2006).

    Article  CAS  Google Scholar 

  9. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He,Carbon,45, 1614 (2007).

    Article  CAS  Google Scholar 

  10. J. S. Joo and C. Y. Lee,J. Appl. Phys.,88, 513 (2000).

    Article  CAS  Google Scholar 

  11. Z. Liu, G. Bai, T. Huang, Y. Ma, F. Du, and F. Li,Carbon,45, 821 (2007).

    Article  CAS  Google Scholar 

  12. Y. J. Kim, K. J. An, K. S. Suh, H. D. Choi, J. H. Kwon, and Y. C. Chung,IEEE Trans. Electromagn. Compat.,47, 872 (2005).

    Article  Google Scholar 

  13. Y. Yang and M. C. Gupta,Nano Lett.,5, 2131 (2005).

    Article  CAS  Google Scholar 

  14. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, and H. S. Yoon,Appl. Phys. Lett.,84, 589 (2004).

    Article  CAS  Google Scholar 

  15. N. Li, Y. Huang, F. Du, X. He, X. Lin, and H. Gao,Nano Lett.,6, 1141 (2006).

    Article  CAS  Google Scholar 

  16. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, and C. K. Kum,Polymer,47, 4434 (2006).

    Article  CAS  Google Scholar 

  17. E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. ThorpePhys. Rev. E,52, 819 (1995).

    Article  CAS  Google Scholar 

  18. S. Lefrant,Curr. Appl. Phys.,2, 479 (2002).

    Article  Google Scholar 

  19. N. F. Colaneri and L.W. Shacklette,IEEE Trans. Instr. Meas.,41, 921 (1992).

    Article  Google Scholar 

  20. B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, and X. Wang,Carbon,46, 1175 (2008).

    Article  Google Scholar 

  21. Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence,Adv. Mater.,17, 1999 (2005).

    Article  CAS  Google Scholar 

  22. D. D. L. Chung,Carbon,39, 279 (2001).

    Article  CAS  Google Scholar 

  23. D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London, 1992.

    Google Scholar 

  24. I. Park, M. Park, and J. Kim,Macromol. Res.,16, 498 (2007).

    Google Scholar 

  25. P. C. Ma, B. Z. Tang, and J. K. Kim,Carbon,46, 1497 (2008).

    Article  CAS  Google Scholar 

  26. K. H. Kim and W. H. Jo,Macromol. Res.,16, 749 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, M.S., Lee, Y.K., Kim, W.N. et al. Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macromol. Res. 17, 863–869 (2009). https://doi.org/10.1007/BF03218627

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218627

Keywords

Navigation