Skip to main content
Log in

Synthesis and chiro-optical properties of water processable conducting poly(diphenylamine) nanocomposites

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Water-soluble, chiral conducting, poly(diphenylamine) (PDPA) nanocomposites were synthesized by chemical oxidative polymerization of diphenylamine in the presence of poly(acrylic acid) (PAA) as a template and camphor sulphonic acid (CSA) as the chiral inductor. Composites were formed as stable aqueous dispersions under different experimental conditions, such as DPA to PAA molar ratios, PAA molecular weight, etc. Circular dichroism (CD) spectra of the composites indicated the induction of chirality to PDPA. Compared to simple chiral PANI, the PDPA/PAA/CSA nanocomposites showed a different Cotton effect. The appearance of a CD band in the composite was complimentary to the bisignate, exciton-coupled band in the UV-Visible spectrum. FTIR spectra indicated the intimate mixing of PDPA and PAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. B. Amabilino and J. F. Stoddart,Chem. Rev.,95, 2725 (1995).

    Article  CAS  Google Scholar 

  2. L. Pu,Acta Polym.,48, 116 (1997).

    Article  CAS  Google Scholar 

  3. Y. Okamoto and E. Yashima.Angew. Chem. Int. Ed. Engl.,37, 1922 (1998)

    Article  Google Scholar 

  4. M. M. Green, Topics in Stereochemistry, Materials- Chirality, John Wiley & Sons Inc., 2003, Vol. 24.

  5. K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, and B. A. Garetz,J. Am. Chem. Soc.,125, 7313 (2003).

    Article  CAS  Google Scholar 

  6. E. Yashima, T. Matsushima, and Y. Okamoto,J. Am. Chem. Soc.,117, 11596 (1995).

    Article  CAS  Google Scholar 

  7. E. Yashima, T. Nimura, T. Matsushima, and Y. Okamoto,J. Am. Chem. Soc.,118, 9800 (1996).

    Article  CAS  Google Scholar 

  8. E. Yashima, T. Matsushima, and Y. Okamoto,J. Am. Chem. Soc.,119, 6345 (1997).

    Article  CAS  Google Scholar 

  9. B. J. Rault, E. Raoult, H. J. Tahri, D. H. Le, and J. Simonet,Electrochim Acta,44, 3409 (1999).

    Article  Google Scholar 

  10. (a) J. C. Moutet, E. Saintaman, F. Tranvan, P. Angibeaud, and J. P. Utille,Adv. Mater.,4, 511 (1992), (b) X. Chen and Y. Okamoto,Macromol. Res.,15, 134 (2007).

    Article  CAS  Google Scholar 

  11. (a) J. Jang, J. Ha, and S. Kim,Macromol. Res.,15, 154 (2007), (b) J. Jang, J. Ha, and S. Kim,Macromol. Res.,15, 154 (2007).

    Article  CAS  Google Scholar 

  12. J. Y. Kwon, E. Y. Kim, and H. D. Kim,Macromol. Res.,12, 303 (2004).

    Article  CAS  Google Scholar 

  13. S. A. Ashraf, L. A. P. KaneMaguire, M. R. Majidi, S. G. Pyne, and G. G. Wallace,Polymer,38, 2627 (1997).

    Article  CAS  Google Scholar 

  14. M. R. Majidi, L. A. P. Kane-Maguire, and G. G. Wallace,Polymer,36, 3597 (1995).

    Article  CAS  Google Scholar 

  15. M. R. Majidi, L. A. P. Kane-Maguire, and G. G. Wallace,Polymer,35, 3113 (1994).

    Article  CAS  Google Scholar 

  16. V. Aboutanos, J. N. Barisci, L. A. P. Kane-Maguire, and G. G. Wallace,Synth. Met.,106, 89 (1999).

    Article  CAS  Google Scholar 

  17. E. V. Strounina, L. A. P. Kane-Maguire, and G. G. Wallace,Synth. Met.,106, 129 (1999).

    Article  CAS  Google Scholar 

  18. R. Nagarajan, W. Liu, J. Kumar, S. K. Tripathy, F. Bruno, L. A. Samuelson,Macromolecules,34, 3921 (2001).

    Article  CAS  Google Scholar 

  19. I. D. Norris, L. A. P. Kane-Maguire, and G. G. Wallace,Macromolecules,33, 3237 (2000).

    Article  CAS  Google Scholar 

  20. I. D. Norris, L. A. P. Kane-Maguire, G. G. Wallace, and L. H. C. Mattoso,Aust. J. Chem.,53, 89 (2000).

    Article  CAS  Google Scholar 

  21. P. A. McCarthy, J. Y. Huang, S. C. Yang, and H. L. Wang,Langmuir,18, 259 (2002).

    Article  CAS  Google Scholar 

  22. L. Wenguang, A. M. Patrick, L. Dingguo, H. Jianyu, C. Y. Sze, and L. W. Hsing,Macromolecules,35, 9975 (2002).

    Article  Google Scholar 

  23. L. Y. Guo and K. Noriyuki,Macromolecules,36, 7939 (2003).

    Article  Google Scholar 

  24. J. Guay, R. Paynter, and L. H. Dao,Macromolecules,23, 3598 (1990).

    Article  CAS  Google Scholar 

  25. C. Y. Chung, T. C. Wen, and A. Gopalan,Electrochimica Acta,47, 423 (2001).

    Article  CAS  Google Scholar 

  26. V. Rajendran, A. Gopalan, T. Vasudevan, and T. C. Wen,J. Electrochem. Soc.,147, 3014 (2000).

    Article  CAS  Google Scholar 

  27. F. Hua and E. Ruckenstein,Langmuir,20, 3954 (2004).

    Article  CAS  Google Scholar 

  28. F. Hua and E. Ruckenstein,Macromolecules,36, 9971 (2003).

    Article  CAS  Google Scholar 

  29. M. Thanneermalai, T. Jeyaraman, C. Sivakumar, A. Gopalan, T. Vasudevana, and T. C. Wen,Spectrochimica Acta Part A,59, 1937 (2003).

    Article  CAS  Google Scholar 

  30. P. Santhosh, M. Sankarasubramanian, M. Thanneermalai, A. Gopalan, and T. Vasudevan,Mater. Chem. Phys.,85, 316 (2004).

    Article  CAS  Google Scholar 

  31. Y. T. Tasi, T. C. Wen, and A. Gopalan,Sens Actuators B,B96, 646 (2003).

    Article  Google Scholar 

  32. P. Santhosh, T. Vasudevan, and A. Gopalan,Spectrochim Acta A,59, 1427 (2003).

    Article  CAS  Google Scholar 

  33. M. S. Wu, T. C. Wen, and A. Gopalan,J. Electrochem. Soc.,148, D65 (2001).

    Article  CAS  Google Scholar 

  34. E. E. Havuiga, M. M. Bouman, E. W. Meiger, A. Pop, and M. M. Simenon,Synth. Met.,66, 93 (1994).

    Article  Google Scholar 

  35. I. D. Norris, L. A. P. Kane-Maguire, and G. G. Wallace,Macromolecules,31, 6529 (1998).

    Article  CAS  Google Scholar 

  36. K. A. Piaso, S. Kaneko, K. Sakamato, H. Shirakawa, and M. Kyotami,Science,27, 1683 (1998).

    Google Scholar 

  37. K. Maeda, K. Morino, Y. Okamoto, T. Sato, and E. Yashima,J. Am. Chem. Soc.,126, 4329 (2004).

    Article  CAS  Google Scholar 

  38. M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson,Science,268, 1860 (1995).

    Article  CAS  Google Scholar 

  39. T. Nakano and Y. Okamoto,Chem. Rev.,101, 4013 (2001).

    Article  CAS  Google Scholar 

  40. J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, and N. A. J. M. Sommerdijk,Chem. Rev.,101, 4039 (2001).

    Article  CAS  Google Scholar 

  41. K. Shinohara, S. Yasuda, G. Kato, M. Fujita, and H. Shigekawa,J. Am. Chem. Soc.,123, 3619 (2001).

    Article  CAS  Google Scholar 

  42. Y. Okamoto, M. Matsuda, T. Nakano, and E. Yashima,J. Polym. Sci.; Part A: Polym. Chem.,32, 309 (1994).

    Article  CAS  Google Scholar 

  43. K. Maeda, M. Matsuda, T. Nakano, and Y. Okamoto,Polym. J.,27, 141 (1995).

    Article  CAS  Google Scholar 

  44. M. Muller and R. Zentel,Macromolecules,29, 1609 (1996).

    Article  Google Scholar 

  45. M. M. Andreola, C. Munoz, B. Reidy, and M. P. Zelo,J. Am. Chem. Soc.,110, 4063 (1988).

    Article  Google Scholar 

  46. M. Inouye, M. Waki, and H. Abe,J. Am. Chem. Soc.,126, 2022 (2004).

    Article  CAS  Google Scholar 

  47. M. Ishikawa, K. Maeda, and E. Yashima,J. Am. Chem. Soc.,124, 7448 (2002).

    Article  CAS  Google Scholar 

  48. D. Berthier, T. Buffeteau, J. M. Leger, R. Oda, and I. Huc,J. Am. Chem. Soc.,124, 13486 (2002).

    Article  CAS  Google Scholar 

  49. D. M. Tigellar, W. Lee, K. A. Wates, A. J. Saprigin, V. N. Prigodin, X. Cao, L. A. Nafie, M. S. Platz, and A. Epstein,J. Chem. Mater.,14, 1430 (2002).

    Article  Google Scholar 

  50. J. Huang, V. M. Egan, H. Guo, J. Y. Yoon, A. L. Briseno, I. E. Rauda, R. L. Garrel, C. M. Knobler, F. Zhou, and R. B. Kanee,Adv. Mater.,15, 1158 (2003).

    Article  CAS  Google Scholar 

  51. A. Aboutanos, J. N. Barisci, L. A. P. Kane-Maguire, and G. G. Wallace,Synth. Met.,106, 89 (1999).

    Article  CAS  Google Scholar 

  52. S. J. Su and N. Kuramato,Macromolecules,34, 7269 (2001).

    Article  Google Scholar 

  53. S. J. Su and N. Kumaranto,Chem. Mater.,34, 7249 (2001).

    CAS  Google Scholar 

  54. V. S. Ekaterina, L. A. P. Kane-Maguire, and G. G. Wallace,Synth. Met.,106, 129 (1999).

    Article  Google Scholar 

  55. K. A. Runcie and R. J. K. A. Taylor,Macromolecules,3, 3237 (2001).

    CAS  Google Scholar 

  56. G. L. Yuan and N. Kuramato,Macromolecules,35, 9773 (2002).

    Article  CAS  Google Scholar 

  57. A. Pud, N. Ogurtsov, A. Korzhenko, and L. G. Shapova,Prog. Polym. Sci.,28, 1701 (2003).

    Article  CAS  Google Scholar 

  58. N. Gospodinova and L. Terlemezyan,Prog. Polym. Sci.,23, 1443 (1998).

    Article  CAS  Google Scholar 

  59. W. S. Huang and A. G. MacDiarmid,Polymer,34, 1833 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Pill Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Showkat, A.M., Lee, KP., Gopalan, A.I. et al. Synthesis and chiro-optical properties of water processable conducting poly(diphenylamine) nanocomposites. Macromol. Res. 15, 575–580 (2007). https://doi.org/10.1007/BF03218833

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218833

Keywords

Navigation