Skip to main content
Log in

Effect of collector temperature on the porous structure of electrospun fibers

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) ere dissolved in volatile solvents, namely methylene chloride (MC) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ziabicki,Fundamentals of Fiber Formation: the Science of Fiber Spinning and Drawing, Wiley, New York, 1976.

    Google Scholar 

  2. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee,Eur. Polym. J.,39, 1883 (2003).

    Article  CAS  Google Scholar 

  3. M. M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner,Phys. Fluids,13, 2221 (2001).

    Article  CAS  Google Scholar 

  4. P. K. Baumgarten,J. Colloid Interf. Sci.,36, 71 (1971).

    Article  CAS  Google Scholar 

  5. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse,J. Appl. Phys.,87, 4531 (2000).

    Article  CAS  Google Scholar 

  6. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung,J. Polym. Sci.; Part B: Polym. Phys.,40, 2259 (2002).

    Article  CAS  Google Scholar 

  7. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner,Adv. Mater.,12, 637 (2000).

    Article  CAS  Google Scholar 

  8. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff,Adv. Mater.,13, 70 (2001).

    Article  CAS  Google Scholar 

  9. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt,Macromolecules,37, 573 (2004).

    Article  CAS  Google Scholar 

  10. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt,Macromolecules,35, 8456 (2002).

    Article  CAS  Google Scholar 

  11. D. H. Reneker and I. Chun,Nanotechnology,36, 169 (1997).

    Google Scholar 

  12. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).

    Article  CAS  Google Scholar 

  13. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof,Macromolecules,33, 2989 (2000).

    Article  CAS  Google Scholar 

  14. L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof,J. Biomater. Sci. Polym. Ed.,12, 979 (2001).

    Article  CAS  Google Scholar 

  15. J. D. Stitzel, G. L. Bowlin, K. Mansfield, G. E. Wnek, and D. G. Simpson,Int. SAMPE Tech. Conf.,32, 205 (2000).

    CAS  Google Scholar 

  16. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin,J. Macromol. Sci. Pure Appl. Chem.,A38, 1231 (2001).

    CAS  Google Scholar 

  17. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu,Polymer,43, 4403 (2002).

    Article  CAS  Google Scholar 

  18. K. Nagapudi, W. T. Brinkman, J. E. Leisen, L. Huang, R. A. McMillan, R. P. Apkarian, V. P. Conticello, and E. L. Chaikof,Macromolecules,35, 1730 (2002).

    Article  CAS  Google Scholar 

  19. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin,Biomacromolecules,3, 232 (2002).

    Article  CAS  Google Scholar 

  20. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko,J. Biomed. Mater. Res.,60, 613 (2002).

    Article  CAS  Google Scholar 

  21. E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, S. G. Simpson, and G. E. Wnek,Biomaterials,24, 907 (2003).

    Article  CAS  Google Scholar 

  22. B. D. Ratner,Trends Polym. Sci.,2, 402 (1994).

    CAS  Google Scholar 

  23. J. Schmidt and A. F. von Recum,Biomaterials,13, 1059 (1992).

    Article  CAS  Google Scholar 

  24. A. Curtis and C. Wilkinson,Biomaterials,18, 1 (1997).

    Article  Google Scholar 

  25. E. Richter, G. Fuhr, T. MuÈller, S. Shirley, S. Rogaschewski, K. Reimer, and C. Dell,J. Mater. Sci. Mater. Med.,7, 85 (1996).

    Article  CAS  Google Scholar 

  26. W. Liu, Z. Wu, and D. H. Reneker,Polym. Prepr.,41, 1193 (2000).

    CAS  Google Scholar 

  27. A. C. Backman and K. A. H. Lindberg,J. Appl. Polym. Sci.,91, 3009 (2004).

    Article  CAS  Google Scholar 

  28. H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki,J. Appl. Polym. Sci.,74, 171 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.H., Jung, Y.H., Kim, H.Y. et al. Effect of collector temperature on the porous structure of electrospun fibers. Macromol. Res. 14, 59–65 (2006). https://doi.org/10.1007/BF03219069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219069

Keywords

Navigation