Skip to main content
Log in

Intermetallic alloys based on gamma titanium aluminide

  • High-Temperature Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium-aluminide alloys based on TiAl have an excellent potential to become one of the most important aerospace materials because of their low density, high melting temperature, good elevated-temperature strength and modulus retention, high resistance to oxidation and hydrogen absorption, and excellent creep properties. The chief roadblock to their application is poor ductility at low to intermediate temperatures that results in low fracture toughness and a fast fatigue-crack growth rate. During the last several years, a great deal of effort has been made to improve these ductile properties. These endeavors have met with some success through chemistry modification and microstructure control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B. Bomberger et al., Titanium Technology (Dayton, OH: TDA, 1985), pp. 3–17.

    Google Scholar 

  2. N.G. Tupper, J.K. Elbaum and H.M. Burte, JOM, 30 (1978), pp. 7–13.

    Google Scholar 

  3. F.H. Froes, Space Age Metals Technology (Covina, CA: SAMPE, 1988), pp. 1–19.

    Google Scholar 

  4. M.J. Blackburn and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-82-4086 (1982).

    Google Scholar 

  5. H.A. Lipsitt, Advanced High-Temperature Alloys (Metals Park, OH: ASM, 1986), pp. 157–164.

    Google Scholar 

  6. N.S. Choudhury et al., Properties of High Temperature Alloys with Emphasis on Environmental Effects (Electrochemical Society, 1976), pp. 668–680.

    Google Scholar 

  7. M. Khobaib and F.W. Vahldiek, op. cit. 3, pp. 262–270.

    Google Scholar 

  8. J. Subrahmanyam, J. Materials Science, 23 (1988), pp. 1906–1910.

    CAS  Google Scholar 

  9. M.J. Blackburn and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-80-4175 (1980).

    Google Scholar 

  10. M.J. Blackburn et al., “Titanium Alloys of the TiAl Type,” U.S. Patent No. 4,294,615 (1981).

    Google Scholar 

  11. M.J. Blackburn, J.T. Hill and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-84-4078 (1984).

    Google Scholar 

  12. S.C. Huang and E.L. Hall, MRS Meeting, Boston (1988).

    Google Scholar 

  13. T. Tsujimoto and K. Hashimoto, MRS Meeting, Boston (1988).

    Google Scholar 

  14. T. Kawabata, T. Tamura and O. Izumi, MRS Meeting, Boston (1988).

    Google Scholar 

  15. D.J. Maykuth, Battelle Memorial Institute, DMIC Report 136B (May 29, 1961).

    Google Scholar 

  16. I.A. Zelenkov and Ye.N. Martynchik, Metallofizika, Naukova Dumka, Nr. 42 (1972), pp. 63–66.

    Google Scholar 

  17. H.R. Ogden, D.J. Maykuth, W.L. Finlay and R.I. Jaffee, Trans. AIME, 191 (1951), pp. 1150–1155.

    Google Scholar 

  18. D. Clark et al., J. Institute of Metals, 91 (1962–1963), p. 197.

    Google Scholar 

  19. J.L. Murray, Binary Phase Diagrams, ed. T.B. Massalski (Metals Park, OH: ASM, 1986), p. 173.

    Google Scholar 

  20. E.S. Bumps, H.D. Kessler and M. Hansen, Trans. AIME, 194 (1952), pp. 609–614.

    Google Scholar 

  21. P. Duwez and J.L. Taylor, JOM (January 1952), p. 70.

    Google Scholar 

  22. S.C. Huang, E.L. Hall and M.F.X. Gigliotti, High-Temperature Ordered Intermetallic Alloys II, ed. N.S. Stoloff, C.C. Koch, C.T. Liu and O. Izumi (Pittsburgh, PA: MRS, 1987), p. 481.

    Google Scholar 

  23. R.P. Elliott and W. Rostoker, Acta Met., 2 (1954), pp. 884–885.

    Google Scholar 

  24. C. McCullough et al., Scripta Met., 22 (1988), pp. 1131–1136.

    Google Scholar 

  25. M.J. Blackburn, The Science, Technology and Application of Titanium, (Oxford: Pergamon Press, 1970), pp. 633–643.

    Google Scholar 

  26. J.J. Valencia et al., Scripta Met., 21 (1987), pp. 1341–1346.

    CAS  Google Scholar 

  27. D.S. Shong, A. Jackson and Y-W. Kim, Met. Trans. (1989), in print.

    Google Scholar 

  28. C.R. Feng, D.J. Michel and C.R. Crowe, MRS Meeting, Boston (1988).

    Google Scholar 

  29. C.R. Feng, D.J. Michel and C.R. Crowe, Scripta Met., 22 (1988), pp. 1481–1486.

    CAS  Google Scholar 

  30. K. Hashimoto, H. Doi and T. Tsujimoto, Trans. Japan Inst. Metals, 27(10) (1986), pp. 741–749.

    Google Scholar 

  31. P.A. Farrar and H. Margolin, Trans. TMS-AIME, 221 (December 1961), p. 1214.

    Google Scholar 

  32. J.T. Jewett, J.C. Lin et al., MRS Meeting, Boston (1988).

    Google Scholar 

  33. M.J. Blackburn et al., AFWAL Technical Report, AFML-78-18 (1978).

    Google Scholar 

  34. H.R. Ogden, D.J. Maykuth, W.L. Finlay and R.I. Jaffee, Journal of Metals (February 1953), pp. 267–272.

    Google Scholar 

  35. M.J. Blackburn et al., AFWAL Technical Report No. AFML-TR-79-4056 (1979).

    Google Scholar 

  36. T. Tsujimoto et al., Trans. Japan Institute of Metals, 27 (May 1986).

    Google Scholar 

  37. S.C. Huang, E.L. Hall and M.F.X. Gigliotti, abstract book, p. NP70, Sixth World Conference on Titanium, Cannes, France (June 1988).

    Google Scholar 

  38. H.A. Lipsitt et al., Met. Trans., 6A (November 1975), p. 1991.

    CAS  Google Scholar 

  39. S.C. Huang et al., TMS Annual Meeting, Phoenix, AZ (January 1988).

    Google Scholar 

  40. J.B. McAndrew and H.D. Kessler, JOM (October 1956), p. 1348.

    Google Scholar 

  41. T.E. O)Connell, AFWAL Technical Report No. AFML-TR-79-4177 (December 1979).

    Google Scholar 

  42. T. Kawabata, M. Tadano and O. Izumi, Scripta Met., 22 (1988), pp. 1725–1730.

    CAS  Google Scholar 

  43. R.E. Schafrik, Met. Trans., 8A (June 1977), pp. 1003–1006.

    CAS  Google Scholar 

  44. Y. Nishiyama et al., 1987 Tokyo International Gas Turbine Congress, III (1987), pp. 263–269.

    Google Scholar 

  45. S.M. Barinov et al., Izvestiya Akademii Nauk SSSR, 54 (1983), pp. 170–174.

    Google Scholar 

  46. G. Hug et al., Philosophical Magazine A, 54 (1986), pp. 47–65.

    CAS  Google Scholar 

  47. T. Kawabata and O. Izumi, Scripta Met., 21 (1987), pp. 433–434.

    CAS  Google Scholar 

  48. G. Hug, A. Loisseau and P. Veyssiere, Phil. Mag. A, 57 (1988), pp. 499–523.

    CAS  Google Scholar 

  49. D.W. Pashley et al., Phil. Mag., 8th series, 19 (1969), p. 83.

    CAS  Google Scholar 

  50. D. Shechtman et al., Met. Trans., 5 (June 1974), p. 1373.

    CAS  Google Scholar 

  51. E.L. Hall and S.C. Huang, MRS Meeting, Boston (1988).

    Google Scholar 

  52. S.M.L. Sastry and H.A. Lipsitt, Titanium ’80 (Warrendale, PA: TMS-AIME, 1980), pp. 1231–1243.

    Google Scholar 

  53. T. Kawabata and O. Izumi, Scripta Met., 21 (1987), pp. 435–440.

    CAS  Google Scholar 

  54. T. Kawabata et al., Acta Metall., 36(1988), pp. 963–975.

    CAS  Google Scholar 

  55. S.M.L. Sastry and H.A. Lipsitt, Met. Trans., 8A (February 1977), p. 299.

    CAS  Google Scholar 

  56. T. Hanamura, R. Uemori and M. Tanino, J. Mater. Res., 3(4) (July/August 1988), p. 656.

    CAS  Google Scholar 

  57. R.F. Domagala and W. Rostoker, Trans. ASM, 47 (1955), pp. 565–577.

    Google Scholar 

  58. R.A. Perkinset al., Scripta Met., 21 (1987), pp. 1505–1510.

    CAS  Google Scholar 

  59. D.S. Shong, Y-W. Kim et al., High Temperature Ordered Intermetallic Alloys (Pittsburgh, PA: MRS, 1989) in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YW. Intermetallic alloys based on gamma titanium aluminide. JOM 41, 24–30 (1989). https://doi.org/10.1007/BF03220267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220267

Keywords

Navigation