Skip to main content
Log in

Continuous fiber-reinforced titanium aluminide composites

  • Unique Aerospace Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent work on a lightweight, elevated-temperature intermetallic-matrix composite (SCS-6 SiC/α2 Ti-14Al-21Nb), including investigations of fabrication techniques, microstructural characteristics and mechanical behavior, indicates that the material appears promising for a number of demanding applications. If successfully implemented, this material, or a derivative, will provide substantial weight savings in aerospace systems. To realize this potential, major challenges must be conquered—low-temperature ductility and environmental resistance must be improved, and the cost must be brought to competitive levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Congress of the U.S., Office of Technology Assessment, “Advanced Materials by Design” (June 1988).

    Google Scholar 

  2. F.H. Froes, “Aerospace and Defense Structural Materials for the Twenty-First Century},” P/M in Aerospace and Defense Technologies}, ed.} F.H. Froes} (Princeton, NJ: MPIF}, 1990}), pp. 23–24

  3. Scientific American, 255 (4) (Oct. 1986).

  4. F.H. Froes, “Trends in High Performance Lightweight Metals,” Materials Edge (May/June 1988), pp. 19–31.

    Google Scholar 

  5. H.A. Lipsitt, “Titanium Aluminides—An Overview,” High Temperature Ordered Intermetallic Alloys, ed. C.C. Koch, C.T. Liu and N.S. Stoloff (Pittsburgh, PA: MRS, 1985), pp. 351–364.

    Google Scholar 

  6. D.A. Koss et al., “A Review of the Deformation and Fracture of Ti3Al-Based Alloys,” High Temperature Aluminides and Intermetallics, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), pp. 175–196.

    Google Scholar 

  7. F.W. Wawner, “Boron and Silicon Carbide/Carbon Fibers,” Fiber Reinforcements for Composite Materials, ed. A.R. Bunsell (New York: Elsevier Science Pub., 1988), pp. 371–425.

    Google Scholar 

  8. F.W. Wawner, A.Y. Teng and S.R. Nutt, “Microstructural Characterization of SiC (SCS) Filaments,” SAMPE Quarterly (1983), pp. 39–45.

    Google Scholar 

  9. J.A. DiCarlo, “Creep of Chemically Vapour Deposited SiC Fibers,” J. Mater. Sci., 21 (1986), pp. 217–224.

    CAS  Google Scholar 

  10. J.R. Stephens and M.V. Nathal, “Status and Prognosis for Alternative Engine Materials,” Superalloys 1988, ed. D.N. Duhl et al. (Warrendale, PA: TMS, 1988), pp. 183–192.

    Google Scholar 

  11. J.W. Pickens et al., “Fabrication of Intermetallic Matrix Composites by the Powder Cloth Process,” NASATM-102060 (Cleveland, OH: NASA-Lewis, 1989).

    Google Scholar 

  12. P.K. Brindley, “SiC Reinforced Aluminide Composites,” High-Temperature Ordered Intermetallic Alloys II, ed. N.S. Stoloff et al. (Pittsburgh, PA: MRS, 1987), pp. 419–424.

    Google Scholar 

  13. N.S. Stoloff and R.G. Davies, “The Mechanical Properties of Ordered Alloys,” Prog. Mater. Sci., 13 (1966), pp. 3–84.

    Google Scholar 

  14. P.K. Brindley, P.A. Bartolotta and S.J. Klima, “Investigation of a SiC/Ti-24Al-11Nb Composite,” NASA TM-100956 (Washington, D.C.: NASA, 1988).

    Google Scholar 

  15. P.K. Brindley et al., “Factors Which Influence Tensile Strength of a SiC/Ti-24Al-11Nb (at.%) Composite,” Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites, ed. P.K. Liaw and M.N. Gungor (Warrendale, PA: TMS, 1990), pp. 387–401.

    Google Scholar 

  16. R. Bowman and R. Noebe, “Up-and-Coming IMCs,” Advanced Matls. and Processes (1989), pp. 35–40.

    Google Scholar 

  17. J.M. Larsen et al., “Titanium Aluminides for Aerospace Applications,” High Temperature Aluminides and Intermetallics, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), pp. 521–556.

    Google Scholar 

  18. B.R. Kortyna and N.E. Ashbaugh, “Fatigue Characteristics of a Titanium Aluminide Composite at Elevated Temperature,” Titanium Aluminide Composites, ed. P.R. Smith, S.J. Balsone and T. Nicholas (Dayton, OH: Wright-Patterson Air Force Base, Feb. 1991), pp. 467–483.

    Google Scholar 

  19. S.M. Russ and T. Nicholas, “Thermal and Mechanical Fatigue of Titanium Aluminide Metal Matrix Composites,” op. cit. 18, pp. 431–449.

    Google Scholar 

  20. M. Khobaib, “Creep Behavior of SCS-6/Ti-24Al-11Nb Composite,” op. cit. 18, pp. 450–466.

    Google Scholar 

  21. J.M. Larsen, “Mechanical Behavior and Damage Tolerance of Titanium Aluminide Composites,” The 14th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASACP-3097, Part 2 (Hampton, VA: NASA-Langley, 1990), pp. 693–709.

    Google Scholar 

  22. G.K. Watson and J.W. Pickens, “Fabrication of Intermetallic Matrix Composites,” HITEMP Review 1989—Advanced High Temperature Engine Materials Technology Program, NASA CP-10039 (Cleveland, OH: NASA-Lewis, 1989), pp. 50–1-50-11.

    Google Scholar 

  23. H. Gigerenzer and P.K. Wright, “Plasma Sprayed SCS-6/Titanium Aluminide Composite Test Panels,” op. cit. 18, pp. 251–264.

    Google Scholar 

  24. D.R. Pank et al., “Structure-Property Relationships in Ti3Al/SCS-6 Composites,” op. cit. 18, pp. 382–398.

    Google Scholar 

  25. P.A. Siemers and J.J. Jackson, “Ti3Al/SCS-6 MMC Fabrication by Induction Plasma Deposition,” op. cit. 18, pp.233–251.

    Google Scholar 

  26. J. Jackson et al., “Titanium Aluminide Composites—Interim Report No. 3,” Air Force contract F33657-86-C-2136, Wright-Patterson AFB, OH (June 1989).

  27. J.W. Pickens and G.K. Watson, “SiC/Ti3Al + Nb Composite Fabrication by the Arc Spray Process,” The 14th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA CP-3097, Part 2 (Hampton, VA: NASA-Langley, 1990), pp. 711–731.

    Google Scholar 

  28. R.A. MacKay and P.K. Brindley, unpublished research, NASA-Lewis Research Center, Cleveland, OH (April 1990).

  29. R.A. MacKay, “Effect of Fiber Spacing on Interfacial Damage in a Metal Matrix Composite,” Scripta Metall. et Mater., 24 (1990), pp. 167–172.

    CAS  Google Scholar 

  30. R.A. MacKay and P.A. Siemers, unpublished research, NASA-Lewis Research Center, Cleveland, OH (April 1990).

  31. R. Nimmer et al., “Effects of Fiber Array Geometry on the Transverse Tensile Behavior of Titanium MMC’s,” op. cit. 18, pp. 596–619.

    Google Scholar 

  32. S.F. Baumann, P.K. Brindley and S.D. Smith, “Reaction Zone Microstructure in a Ti3Al + Nb/SiC Composite,” Met. Trans., 21A (1990), pp. 1559–1569.

    CAS  Google Scholar 

  33. A.M. Ritter, E.L. Hall and N. Lewis, “Reaction Zone Growth in Ti-Base/SiC Composites,” Intermetallic Matrix Composites, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990), pp. 413–421.

    Google Scholar 

  34. J.M. Yang and S.M. Jeng, “Interfacial Reactions in Titanium-Matrix Composites,” JOM 41(11) (November 1989), pp. 56–59.

    Article  CAS  Google Scholar 

  35. F.H. Froes, C. Suryanarayana and D. Eliezer, “Synthesis, Properties, and Applications of Titanium Aluminides,” submitted to Int. Mats. Reviews.

  36. G. Das, “A Study of the Reaction Zone in an SiC Fiber-Reinforced Titanium Alloy Composite,” Met. Trans., 21A (1990), pp. 1571–1578.

    CAS  Google Scholar 

  37. C.G. Rhodes et al., “Matrix/Reinforcement Interactions in Shock-Wave Consolidated Titanium Aluminide Reinforced with SiC,” Met. Trans., 21A (1990), pp. 1589–1593.

    CAS  Google Scholar 

  38. P.R. Smith and F.H. Froes, “Developments in Titanium Metal Matrix Composites,” JOM, 36(3) (1984), pp. 19–26.

    CAS  Google Scholar 

  39. A.G. Metcalf, “Interaction and Fracture of Titanium-Boron Composites,” J. Composite Mat., 1 (1967), pp. 356–365.

    Google Scholar 

  40. A.G. Metcalf and M.J. Klein, “Effect of the Interface on Longitudinal Tensile Properties,” Interfaces in Metal Matrix Composites, ed. A.G. Metcalf (New York: Academic Press, 1974), pp. 125–168.

    Google Scholar 

  41. S. Ochiai and Y. Murakami, “Tensile Strength of Composites with Brittle Reaction Zones at Interfaces,” J. Mat. Sci., 14 (1979), pp. 831–840.

    CAS  Google Scholar 

  42. R.P. Nimmer et al., “Micromechanical Modelling of Fiber/Matrix Interface Effects in SiC/Ti Metal Matrix Composites,” The 13th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA CP-3054, Part 2 (Hampton, VA: NASA-Langley, 1990), pp. 493–514.

    Google Scholar 

  43. P.R. Smith, C.G. Rhodes and W.C. Revelos, “Interfacial Evaluation in a Ti-25Al-17Nb/SCS-6 Composites,” Interfaces in Metal-Ceramics Composites, ed. R.Y. Lin et al. (Warrendale, PA: TMS, 1989), pp. 35–58.

    Google Scholar 

  44. P.K. Brindley, P.A. Bartolotta and R.A. MacKay, “Thermal and Mechanical Fatigue of SiC/Ti3Al + Nb,” HITEMP Review 1989—Advanced High Temperature Engine Materials Technology Program, NASACP-10039 (Cleveland, OH: NASA-Lewis, 1989), pp. 52–1-52-14.

    Google Scholar 

  45. P.K. Brindley, R.A. MacKay and P.A. Bartolotta, “Thermal Cycling and Isothermal Fatigue of SiC/Ti-24Al-11Nb,” op. cit. 18, pp. 484–496.

    Google Scholar 

  46. B.N. Cox et al., “On Determining Temperature Dependent Interfacial Shear Properties and Bulk Residual Stresses in Fibrous Composites,” Acta Met., 38 (1990), pp. 2425–2433.

    CAS  Google Scholar 

  47. L.J. Ghosn and B.A. Lerch, “Optimum Interface Properties for Metal Matrix Composites,” NASA TM-102295 (Cleveland, OH: NASA-Lewis, 1989).

    Google Scholar 

  48. C.G. Rhodes, C.C. Bampton and J.A. Graves, “Studies of Titanium Aluminide Composites Containing Metallic Fiber/Matrix Interface Layers,” Intermetallic Matrix Composites, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990), pp. 349–354.

    Google Scholar 

  49. S.M. Arnold, V.K. Arya and M.E. Melis, “Elastic/Plastic Analyses of Advanced Composites Investigating the Use of the Compliant Layer Concept in Reducing Residual Stresses Resulting from Processing,” NASA TM-103204 (Cleveland, OH: NASA-Lewis, 1990).

    Google Scholar 

  50. M.L. Gambone, “Fatigue and Fracture of Titanium Aluminides, Vol. II,” Final Report, Air ForceContract WRDC-TR-89-4145; Wright-Patterson AFB, OH (February 1990).

    Google Scholar 

  51. P.K. Brindley, unpublished research, NASA-Lewis Research Center.

  52. M.L. Gambone, “Fatigue and Fracture of Titanium Aluminides, Vol. I,” Final Report, Air Force Contract WRDC-TR-89-4145; Wright-Patterson AFB, OH (February 1990).

    Google Scholar 

  53. C.G. Rhodes, A.K. Ghosh and R.A. Spurting, “Ti-6Al-4V-2Ni as a Matrix Material for a SiC-Reinforced Composite,” Met. Trans., 18A (1987), pp. 2151–2156.

    CAS  Google Scholar 

  54. P.R. Smith, F.H. Froes and J.T. Cammett, “Correlation of Fracture Characteristics and Mechanical Properties for Titanium-Matrix Composites,” Failure Modes in Composites VI, ed. J.A. Cornie and F.W. Crossman (Warrendale, PA: TMS, 1977), pp. 143–168.

    Google Scholar 

  55. S.M. Russ, “Thermal Fatigue of Ti-24Al-11Nb/SCS-6,” Met. Trans., 21A (1990), pp. 1595–1602.

    CAS  Google Scholar 

  56. W.C. Revelos and P.R. Smith, “Effect of Environment on the Thermal Fatigue Response of a Ti-24Al-11Nb/SCS-6 Composite,” op. cit. 18, pp. 399–414.

    Google Scholar 

  57. P.A. Bartolotta and P.K. Brindley, “High Temperature Fatigue Behavior of a SiC/Ti-24Al-11Nb Composite,” NASA TM-103157 (Cleveland, OH: NASA-Lewis, 1990).

    Google Scholar 

  58. S.M. Russ and T. Nicholas, “Thermal and Mechanical Fatigue of Titanium Aluminide Metal Matrix Composites,” op. cit. 18, pp. 431–449.

    Google Scholar 

  59. K.R. Bain, M.L. Gambone and R.D. Zordan, “The Effect of Notches on the Fatigue Life of SCS-6/Ti3Al Composite,” Intermetallic Matrix Composites, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990), pp. 271–276.

    Google Scholar 

  60. R. John and N.E. Ashbaugh, “Fatigue Crack Growth Parallel to Fibers in Unidirectional Metal Matrix Composites,” op. cit. 18, pp. 497–510.

    Google Scholar 

  61. B.N. Cox et al., “Failure Mechanisms in Titanium Aluminide/SiC Composites,” Materials and Processing—Move into the 90’s, ed. S. Benson et al. (Amsterdam: Elsevier, 1989), pp. 313–320.

    Google Scholar 

  62. R. Talreja, Fatigue of Composite Materials (Lancaster, PA: Technomic Publishing Co., 1987), pp. 3–24.

    Google Scholar 

  63. B.N. Cox and D.B.Marshall, “Crack Bridging in the Fatigue of Fibrous Composites,” submitted to Fatigue and Fracture of Engineering Materials and Structures.

  64. S.J. Balsone, “The Effect of Elevated Temperature Exposure on the Tensile and Creep Properties of Ti-24Al-11Nb,” Oxidation of High Temperature Intermetallics, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), pp. 219–234.

    Google Scholar 

  65. H.G. Nelson, “Hydrogen and Advanced Aerospace Materials,” Space Age Metals Technology, ed. F.H. Froes and R.A. Cull (Covina, CA: SAMPE, 1988), pp. 310–319.

    Google Scholar 

  66. D. Driver, “Materials and Process Directions for Advanced Aero-Engine Design,” High Temperature Materials for Power Engineering, part II, ed. E. Bachelet et al. (Dordrecht, the Netherlands: Kluwer Academic Publishers, 1990), pp. 883–902.

    Google Scholar 

  67. J.R. Stephens, “HITEMP Program Overview,” HITEMP Review 1990—Advanced High Temperature Engine Materials Technology Program, NASACP-10051(Cleveland, OH: NASA-Lewis, 1990), pp. 1–1–1–23.

    Google Scholar 

  68. T.M.F. Ronald, “Advanced Materials to My High in NASP,” Adv. Mat. and Proc., 135(5) (1989), pp. 29–37.

    Google Scholar 

  69. V.P. McConnell, “The National Aerospace Plane: A New Regime in Flight,” Advanced Composites (Nov./Dec. 1990), pp. 37–45.

    Google Scholar 

  70. Z. Dunxu, Central Iron and Steel Research Institute, Beijing, PRC; private communication with F.H. Froes (January 16, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKay, R.A., Brindley, P.K. & Froes, F.H. Continuous fiber-reinforced titanium aluminide composites. JOM 43, 23–29 (1991). https://doi.org/10.1007/BF03220564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220564

Keywords

Navigation