Skip to main content
Log in

Ordered intermetallic alloys, part III: Gamma titanium aluminides

  • Titanium Alloy
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Extensive research during the last eight years has resulted in the development and improvement of second-generation gamma alloys of engineering importance, Ti-48Al-2(Cr or Mn)-2Nb and derivatives. These alloys exhibit properties, in duplex micro-structural forms, meeting requirements for some gas-turbine and automobile engine components that may be used up to 760 °C. These achievements were made possible by an improved understanding of both fundamental and practical aspects of these aluminides, such as phase relations, microstructure evolution and control, processing, microstructure-property relationships, and deformation and fracture processes. Nevertheless, widespread higher performance and/or higher-temperature applications of these alloys appear unlikely unless the current properties are dramatically improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y-W. Kim, JOM, 41(7) (1989), pp. 24–30.

    CAS  Google Scholar 

  2. Y-W. Kim and D.M. Dimiduk, JOM, 43(8) (1991), pp. 40–47.

    CAS  Google Scholar 

  3. M. Yamaguchi and H. Inui, Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 127–142.

    Google Scholar 

  4. M. Yoshihara, T. Suzuki, and R. Tanaka, ISIJ International, 31 (1991), pp. 1201–1206.

    CAS  Google Scholar 

  5. S. Taniguchi and T. Shibata, Intermetallic Compounds (1993), pp. 1461–1466.

    Google Scholar 

  6. Y-W. Kim, High Temperature Ordered Intermetallic Alloys IV (Pittsburgh, PA: MRS, 1991), pp. 777–793.

    Google Scholar 

  7. S-C. Huang and D.S. Shih, Microstructure/Property Relationships in Titanium Aluminides and Alloys, ed. Y-W. Kim and R.R. Boyer (Warrendale, PA: TMS, 1990), pp. 105–122.

    Google Scholar 

  8. S. Tsuyama, S. Mitao, and K. Minakawa, in Ref. 7, pp. 213–226.

    Google Scholar 

  9. Y-W. Kim, Acta Metall. Mater., 40 (1992), pp. 1121–1134.

    CAS  Google Scholar 

  10. S. C. Huang and E. L. Hall, High Temperature Ordered Intermetallic Alloys III (Pittsburgh, PA: MRS, 1989), pp. 373–383.

    Google Scholar 

  11. M.J. Blackburn et al., U.S. patent 4,294,615 (1981).

  12. T. Tsujimoto and K. Hashimoto, in Ref. 10, pp. 391–396.

    Google Scholar 

  13. M.J. Blackburn and M.P. Smith, Air Force Materials Lab. Report, AFWAL-TR-80-4175 (1980).

    Google Scholar 

  14. Y.G. Yamauchi and H. Shiraishi, MSE, A 153 (1992), pp. 283–287.

    Google Scholar 

  15. A. Denquin, S. Naka et al, Scripta Metall, 28 (1993), pp. 1131–1136.

    CAS  Google Scholar 

  16. S. Jain, Allison Gas Turbine, private communication (1992).

  17. R. Wagner, GKSS, private communication (1993).

  18. M. Nemoto, et al, Mater. Sci. & Eng., A152 (1992), pp. 247

    CAS  Google Scholar 

  19. W. E. Dowling et al., in Ref. 7, pp. 123–133.

    Google Scholar 

  20. B. Worth, Ph.D. thesis, University of Michigan (1993).

    Google Scholar 

  21. I. Yuhki et al., Proc. 1993 Yokohama Meeting (Sendai, Japan: JIM, 1993), p. 334.

    Google Scholar 

  22. Y-W. Kim, in Ref. 5, pp. 1310–1317.

    Google Scholar 

  23. Y-W. Kim, Encyclopedia of Advanced Materials (Oxford, U.K.: Pergamon Press, in press).

  24. M.J. Blackburn and M.P. Smith, U.S. Air Force Report AFWAL-TR-82-4086 (1982).

    Google Scholar 

  25. Y-W. Kim, research in progress (1993-94).

  26. D.S. Shih et al., in Ref. 7, pp. 135–148.

    Google Scholar 

  27. Y-W. Kim and J. J. Kleek, PM’ 90, vol. 1, (London: Institute of Metals, 1990), pp. 272–288.

    Google Scholar 

  28. T. Tsujimoto and K. Hashimoto, in Ref. 7, 391–396.

    Google Scholar 

  29. G. Frommeyer et al., Materials Sci. Eng., A152 (1992), pp. 166–172.

    CAS  Google Scholar 

  30. Y. G. Nakagawa et al., Mater. Sci. Eng., A153 (1992), p. 722.

    Google Scholar 

  31. L. Zhao, J. Beddoes, and W. Wallace, High-Temperature Ordered Intermetallic Alloys V (Pittsburgh, PA: MRS, 1993), pp. 921–926.

    Google Scholar 

  32. D. Larsen, Howmet, private communication (1993).

  33. D. Larsen et al., Intermetallic Matrix Composites (Pittsburgh, PA: MRS, 1990), pp. 285–292.

    Google Scholar 

  34. Y-W. Kim and D.M. Dimiduk, Proc. JIMIS-7 on High Temp. Deformation and Fracture (Sendai, Japan: JIM, 1993), pp. 373–382.

    Google Scholar 

  35. Y-W. Kim and D.M. Dimiduk, U.S. patent filed (22 April 1994).

  36. C. Austin, General Electric, private communication (1993).

  37. S-C. Huang, U.S. patent 5,076,858 (December 31,1991).

  38. S. Tsuyama et al., Mater. Sci & Eng., A153 (1992), pp. 451–456.

    CAS  Google Scholar 

  39. P.G. Breig and S.C. Reed, Materials & Manufacturing Processes, 4 (1989), pp. 73–83.

    Google Scholar 

  40. G. Morgan, Howmet, private communication (1992).

  41. M. Loretto, IRC, private communication (1992).

  42. B. London, Howmet, private communication (1993)

  43. W.G. Smarsly, MTU, private communication (1993).

  44. Y. Nakagawa, IHI, private communication (1993).

  45. Y. Nishiyama et al., High Temperature Aluminides & Intermetallics (Warrendale, PA: TMS, 1990), pp. 557–584.

    Google Scholar 

  46. S. Isobe, Daido Steel, private communication (1993).

  47. B. London et al., in Ref. 3, pp. 151–157.

    Google Scholar 

  48. M. Takeyama et al., JIMIS-6 Proc, on Intermetallic Compounds (Sendai, Japan: JIM, 1991), pp. 507–511.

    Google Scholar 

  49. S-C. Huang, private communication (1993,1994).

  50. M. Nobuki and T. Tsujimoto, ISIJ International, 31 (1991), pp. 931–937.

    CAS  Google Scholar 

  51. S.L. Semiatin et al., Scripta Metall, 24 (1990), pp. 1403–1408.

    CAS  Google Scholar 

  52. S.L. Semiatin, WL, private communication (1993).

  53. K. Wurzwallner et al., in Ref. 31, pp. 867–872.

    Google Scholar 

  54. M. Nobuki and T. Tsujimoto, in Ref. 48, pp. 451–456.

    Google Scholar 

  55. H. Fukutomi et al., Z. Metallkd., 81 (1990), pp. 272–277.

    CAS  Google Scholar 

  56. Ch. Hartig et al., Acta Metall Mater., 40 (1992), pp. 1883–1894.

    CAS  Google Scholar 

  57. H. Fukutomi et al., Scripta Metall Mater., 25 (1991), p. 1681.

    CAS  Google Scholar 

  58. P.A. Beaven et al, in Ref. 6, p. 1.

    Google Scholar 

  59. Y-W. Kim and D.M. Dimiduk, U.S. patent 5,226,985 (July 13,1993).

  60. P.C. McQuay, Y-W. Kim, and D.M. Dimiduk, U.S. patent, to be awarded (July 1994).

  61. N. Fujitsuna et al., in Ref. 3, pp. 187–194.

    Google Scholar 

  62. S.L. Semiatin et al., Scripta Metall, 29 (1993), pp. 1235–1240.

    CAS  Google Scholar 

  63. C. Koeppe et al., Trans. A, 24A (1993), pp. 1795–1806.

    CAS  Google Scholar 

  64. Y-W. Kim et al., research in progress (1993-1994).

  65. Y-W. Kim and D. Furrer, unpublished results (1993).

  66. V. Seetharaman et al., in Ref. 6, p. 895.

    Google Scholar 

  67. T. Tsujimoto et al., Materials Transactions, JIM, 33 (1992), pp. 989–1003.

    CAS  Google Scholar 

  68. S. L. Semiatin et al., Scripta Metall, 25 (1991), pp. 1851–1856.

    CAS  Google Scholar 

  69. H. Clemens et al., Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 205–214.

    Google Scholar 

  70. Y. Ashida, Kobe Steel, private communication (1993).

  71. O.A. Kaibyshev, IMSP, Russia, private communication (1994)

  72. N. Masahashi et al., ISIJ International, 31 (1991), pp. 728–737.

    CAS  Google Scholar 

  73. K. Hashimoto et al., in Ref. 7, pp. 253–262.

    Google Scholar 

  74. M. Nobuki and T. Tsujimoto, unpublished results (1993).

  75. W. B. Lee et al., Scripta Metall, 29 (1993), pp. 1403–1408.

    CAS  Google Scholar 

  76. R.M. Imayev et al., Acta Metall Mater., 40 (1992), pp. 581–597.

    Google Scholar 

  77. T. Maeda and T. Okada (Paper presented at the 3rd IUMRS Int’l. Conf. on Advanced Materials, Tokyo, 1993, in press).

    Google Scholar 

  78. D. Shih (Paper presented at the International Workshop on TiAl, Kloster Irsee, Germany, 2–6 May 1994).

    Google Scholar 

  79. H. Clemens, in Ref. 78.

    Google Scholar 

  80. F. Yolton, Crucible, private communication (1993).

  81. D. Eylon et al., Plansee Seminar Proc, vol. 3 (1993), pp. 552–563.

    Google Scholar 

  82. G. Fuchs, in Ref. 78.

    Google Scholar 

  83. M. Dahms et al, ISIJ International, 31 (1991), pp. 1093–1099.

    CAS  Google Scholar 

  84. M.S. Kim and K. Shibue, Light Materials for Transportation Systems (Pohang, Korea: Center for Advanced Aerospace Materials, 1993), pp. 295–303.

    Google Scholar 

  85. C. Suryanarayana and F.H. Froes, Advanced Materials, 5 (1993), pp. 96–106.

    CAS  Google Scholar 

  86. R. Bormann, in Ref. 78.

    Google Scholar 

  87. K.A.O. O’Reilly and B. Cantor, in Ref. 5, pp. 1576–1581.

    Google Scholar 

  88. T. Kato et al., in Ref. 5, pp. 1570–1575.

    Google Scholar 

  89. MJ. Blackburn et al., Air Force Mat. Lab. Report, AFW AL-TR-84-4078 (1984).

    Google Scholar 

  90. K.S. Chan and Y-W. Kim, Metall. Trans. A, 23A (1992), pp. 1663–1677.

    CAS  Google Scholar 

  91. N. Walker, Rolls Royce, private communication (1994).

  92. Y-W. Kim and D.M. Dimiduk, in Ref. 31, pp. 671–677.

    Google Scholar 

  93. S. Krishnamurthy and Y-W. Kim, in Ref. 7, pp. 149–163.

    Google Scholar 

  94. J. Kumpfert, Y-W. Kim, and D.M. Dimiduk, submitted to Mater. Sci. and Eng. (1994).

    Google Scholar 

  95. H.A. Lipsitt et al, Met. Trans. A, 6A (1975), p. 1991.

    Google Scholar 

  96. E.L. Hall and S.C. Huang, High Temperature Ordered Intermetallic Alloys III (Pittsburgh, PA: MRS, 1989), pp. 693–698.

    Google Scholar 

  97. Y-W. Kim, in Ref. 5, pp. 1310–1317.

    Google Scholar 

  98. P. McQuay, M.S. thesis, Wright State University (1992).

    Google Scholar 

  99. Y. Umakoshi et al., Mater. Sci. Eng., 40 (1992), pp. 81–88.

    Google Scholar 

  100. M. Yamaguchi, ISIJ International, 31 (1991), pp. 1127–1133.

    CAS  Google Scholar 

  101. H. Inui et al., Acta Metall. Mater., 40 (1992), pp. 3095–3104.

    CAS  Google Scholar 

  102. A.N. Stroh, Proc. Royal Soc., A233 (1954), p. 404.

    Google Scholar 

  103. G. Malakondaiah, Y-W. Kim, and T. Nicholas, Scripta Metall., 30 (1994), pp. 939–944.

    CAS  Google Scholar 

  104. M.H. Oh, M. Yamaguchi, et. al, Acta Mater. (1994), in print.

  105. Y-W. Kim, in Ref. 7, pp. 91–103.

    Google Scholar 

  106. K.S. Chan and Y-W. Kim, in Ref. 7, pp. 179–196.

    Google Scholar 

  107. P. Bowen, U. Birmingham, private communication (1993).

  108. B. London and T.J. Kelly, Ref. 7, pp. 285–295.

    Google Scholar 

  109. S. Tsuyama et al., in Ref. 7, pp. 213–226.

    Google Scholar 

  110. K.S. Chan and Y-W. Kim, Acta Metall Mater., accepted (January 1994).

    Google Scholar 

  111. K.S. Chan and Y-W. Kim, Metall. Trans. A, 24A (1993), pp. 113–125.

    CAS  Google Scholar 

  112. N. Masahashi, Nippon Steel, private communication (1993).

  113. N.J. James and P. Bowen, Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 231–240.

    Google Scholar 

  114. H.E. Deve et al., Acta Metall., Mater., 40 (1992), pp. 1259–1265.

    CAS  Google Scholar 

  115. H.E. Deve and A.G. Evans, Acta Metall. Mater., 39 (1991), pp. 1171–1176.

    CAS  Google Scholar 

  116. K. Chan and Y-W. Kim, Met. Trans. A (in print).

  117. S. Mitao et al., in Ref. 7, pp. 297–311.

    Google Scholar 

  118. H. Oikawa, Mater. Sci. & Eng., A153 (1992), pp. 427–432.

    CAS  Google Scholar 

  119. Y-W. Kim and S. Schwenker, research in progress (1994).

  120. J.S. Huang and Y-W. Kim, Scripta Metall., 25 (1991), pp. 1901–1906.

    CAS  Google Scholar 

  121. M. Es-Souni, A. Bartels, and R. Wagner, in Ref. 3, pp. 335–343.

    Google Scholar 

  122. Y-W. Kim, S. Schwenker, and M. Yoshihara, research in progress (1994).

  123. P.L. Martin et al., Met. Trans. A, 14A (1983), p. 2170.

    CAS  Google Scholar 

  124. D.A. Wheeler et al., Scripta Metall., 26 (1992), p. 934.

    Google Scholar 

  125. M.F. Bartholomeusz et al., Scripta Metall., 39 (1993), pp. 389–394.

    Google Scholar 

  126. G.B Viswanathan and V.K. Vasudevan, in Ref. 31, pp. 797–792.

    Google Scholar 

  127. R.W. Hayes and B. London, Acta Metall Mater., 40 (1992), pp. 2167–2175.

    CAS  Google Scholar 

  128. K. Maruyama and H. Oikawa, in Ref. 31, pp. 653–658.

    Google Scholar 

  129. S. Kroll et al., Z. Metallkd., 83 (1992), pp. 591–595.

    CAS  Google Scholar 

  130. A. Bartels, J. Seeger, and H. Mecking, in Ref. 31, pp. 1179–84.

    Google Scholar 

  131. W.E. Dowling, Jr. et al., in Ref. 6, p. 561.

    Google Scholar 

  132. S. Sastry and H. Lipsitt, Met Trans, 8A (1977), pp. 299–308.

    CAS  Google Scholar 

  133. W.O. Soboyejo, J.E. Deffeyes, and P.B. Aswath, Maf. Sci. Eng., A138 (1991), pp. 95–101.

    CAS  Google Scholar 

  134. D.L. Davidson and J.B. Campbell, Met. Trans. A, 24A (1993), pp. 1–20.

    Google Scholar 

  135. A.W. James and P. Bowen, Materials Sci. and Eng., A153 (1992), pp. 486–492.

    CAS  Google Scholar 

  136. K.T.V. Rao, Y-W. Kim, and R.O. Ritchie, Mater. Sci. & Eng. (submitted 1994).

    Google Scholar 

  137. K.T.V. Rao and R.O. Ritchie, Mater. Sci. & Eng., A153 (1992), pp. 479–485.

    CAS  Google Scholar 

  138. J.J. Kleek and Y-W. Kim, unpublished results (1991).

  139. P.S. Pao et al., Scripta Metall., 24 (1990), pp. 1895–1900.

    CAS  Google Scholar 

  140. S. Balsone and D. Maxwell, Mater. Sci. & Eng. (submitted 1994).

    Google Scholar 

  141. J.B. McAndrew and H.D. Kessler, J. Metals (October 1956), p. 1348.

    Google Scholar 

  142. N.S. Choudhury, Properties of HT Alloys with Emphasis on Environmental Effects (Electrical Society, 1976), pp. 668–680.

    Google Scholar 

  143. H. Nakajima et al., in Ref. 3, pp. 1467–1470.

    Google Scholar 

  144. M-X. Zhang et al., Scripta Metall, 27 (1992), pp. 1361–1366.

    CAS  Google Scholar 

  145. S. Becker et al., Oxidation of Metals, 38(5/6) (1992), pp. 425–464.

    CAS  Google Scholar 

  146. K. Maki, M. Shioda, and M. Sayashi, Mater. &i. & Eng., A153 (1992), pp. 591–596.

    CAS  Google Scholar 

  147. Y. Yoshida and H. Anada, High Temp. Corrosion of Advanced Materials and Protective Coatings (New York: Elsevier, 1992), pp. 325–332.

    Google Scholar 

  148. A. Gil et al., J. Materials Science (submitted 1993).

  149. T. Shimizu, T. Ikubo, and S. Isobe, Mater. Sci. and Eng., A 153 (1992), pp. 602–607.

    CAS  Google Scholar 

  150. W.E. Dowling et al., Scripta Metall., 27 (1992), pp. 1663–1668.

    CAS  Google Scholar 

  151. D. Lee, M. Stucke, and D.M. Dimiduk, Mater. Sci. & Eng. (submitted 1994).

    Google Scholar 

  152. T. Kelly and C. Austin, Scripta Metall., 30 (1994), pp. 1105–1110.

    CAS  Google Scholar 

  153. C.T. Liu and Y-W. Kim, Scripta Metall., 27 (1992), pp. 599–603.

    CAS  Google Scholar 

  154. U. Figge et al., 12 Scandinavian Corrosion Congress & Eurocorr’ 93 (city, state: publisher, year), pp. 591-599.

  155. G. Chen, Z. Sun, and X. Zhou, Mater. Sci. & Eng., A153 (1992), pp. 597–601.

    CAS  Google Scholar 

  156. M. Yoshihara and K. Miura, in Ref. 3, pp. 1476–1480.

    Google Scholar 

  157. E. Kobayashi et al, High Temp. Technology, 8 (1990), pp. 179–184.

    CAS  Google Scholar 

  158. D.W. McKee and S.C. Huang, in Ref. 6, pp. 939–943.

    Google Scholar 

  159. A. Takei and Ishida, in Ref. 147, pp. 317–324.

    Google Scholar 

  160. M. Yoshimura et al., in Ref. 3, pp. 1471–1475.

    Google Scholar 

  161. J. Schaeffer, General Electric, private communication (1994).

  162. B. Brindley, NASA-Lewis, private communication (1994).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note

This is the final part of a series on ordered intermetallic alloys. Part I, which appeared in May 1993, covered nickel and iron aluminides. Part II, published in June 1993, covered suicides, trialuminides, bery Hides, chromides, and other aluminides. This article completes the picture by covering gamma titanium aluminides, which in many ways are the most technologically developed of the ordered intermetallics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YW. Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 46, 30–39 (1994). https://doi.org/10.1007/BF03220745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220745

Keywords

Navigation