Skip to main content
Log in

High-strain-rate superplasticity in aluminum-matrix composites

  • Superplasticity
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent progress in high-strain-rate superplastic forming of aluminum metal-matrix composites has highlighted the potential of these materials for the mass production of complex shapes. This article reviews the current scientific understanding of this subject and identifies the areas where future work is needed to develop the technology to the manufacturing stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Bieler, R.S. Mishra, and A.K. Mukherjee, Annual Review of Materials Science, 26, in press.

  2. R.S. Mishra, T.R. Bieler, and A.K Mukherjee, Acta Metall. Mater., 43 (1995), pp. 877–891.

    CAS  Google Scholar 

  3. K.N. Subramanian, T.R. Bieler, and J.P. Lucas, Key Engineering Materials, Part 1, V104-107, ed. G.M. Newaz, H. Neber-Aeschbacher and P.H. Wohlbier (Switzerland: Trans Tech. Ltd., 1995), pp. 175–214.

    Google Scholar 

  4. A.X. Mukherjee, Materials Science and Technology, ed. R.W. Cahn, P. Haasen, E.J. Kramer (Weinheim, Germany: VCH Publishers, 1993), pp. 408–456.

    Google Scholar 

  5. T.G. Nieh and J. Wadsworth, JOM, 44 (11) (1992), pp. 46–5O.

    CAS  Google Scholar 

  6. K. Higashi and M. Mabuchi, Advanced Composites ′93: Proceedings of International Conference on Advanced Composite Materials, ed. T. Chandra and A.K. Ohingra (Warrendale, PA: TMS, 1993), pp. 35–44.

    Google Scholar 

  7. O.D. Sherby and J. Wadsworth, Progress in Materials Science, 33 (1989), p. 169.

    CAS  Google Scholar 

  8. T.G. Nieh, C.A. Henshall, and J. Wadsworth, Scripta Metall., 18 (1984), pp. 1405–1410.

    CAS  Google Scholar 

  9. T.G. Nieh, P.S. Gilman, and J. Wadsworth, Scripta Metall., 19 (1985), pp. 1375–1380.

    CAS  Google Scholar 

  10. T.G. Nieh and J. Wadsworth, Mater. Sci. Eng., A147 (1991), pp. 129–142.

    CAS  Google Scholar 

  11. T.G. Nieh, J. Wadsworth, and T. Imai, Scripta Metall. Mater., 26 (1992), pp. 703–708.

    CAS  Google Scholar 

  12. T. Imai et al., Advances in Powder Metallurgy & Particulate Materials—Particulate Materials and Processes, ed. J.M. Capus and R.M. German (Princelon, NJ: MFIF/APMI, 1992), pp. 181–193.

    Google Scholar 

  13. T.G. Nieh et al., Scripta Metall. Mater., 31 (1994), p. 1685.

    CAS  Google Scholar 

  14. K. Taketani et al., J. Mater. Sci., 29 (1994), pp. 6513–6517.

    CAS  Google Scholar 

  15. K. Higashi et al., Scripta Metall. Mater., 26 (1992), p. 185.

    CAS  Google Scholar 

  16. K. Higashi et al., Scripta Metall. Mater., 25 (1991), pp. 2053–2058.

    CAS  Google Scholar 

  17. K. Higashi et al., Scripta Metall. Mater., 26 (1992), pp. 761–766.

    CAS  Google Scholar 

  18. M. Mabuchi et al., Mater. Sci. Eng., A156 (1992), pp. L9–L12.

    CAS  Google Scholar 

  19. M. Mabuchi et al., Scripta Metall. Mater., 25 (1991), pp. 2517–2522.

    CAS  Google Scholar 

  20. M. Mabuchi et al., Scripta Matall. Mater., 26 (1992), pp. 1839–1844.

    CAS  Google Scholar 

  21. M. Mabuchi, K. Higashi, and T.G. Langdon, Acta Metall. Mater., 42 (1994), pp. 1739–1745.

    CAS  Google Scholar 

  22. M. Mabuchi and T. Imai, J. Mater. Sci. Letters., 9 (1990), p. 761.

    CAS  Google Scholar 

  23. M. Mabuchi et al., J. Mater Sci. Letters, 11 (1991), p. 339.

    CAS  Google Scholar 

  24. T.R. Bieler and A.K. Mukherjee, Mater. Sci. Eng., A128 (1990), pp. 171–182.

    CAS  Google Scholar 

  25. T.R. Bieler, G.R. Goto, and A.X. Mukherjee, J. Mater. Sci., 25 (1990), pp. 4125–4132.

    CAS  Google Scholar 

  26. T.R. Bieler and A.K. Mukherjee, Mater. Trans. JIM, 32 (12) (1991), pp. 1149–1158.

    CAS  Google Scholar 

  27. R.S. Mishra et al., Acta Metall. Mater., to be published.

  28. R.S. Mishra et al., Scripta Mater. Metal., to be published.

  29. M. Mabuchi, K. Kubota, and K. Higashi, Scripta Metall. Mater., 33 (1995), pp. 331–335.

    CAS  Google Scholar 

  30. T.G. Nieh and J. Wadsworth, Scripta Metal Mater., 32 (1995), pp. 1133–1137.

    CAS  Google Scholar 

  31. M. Ferry et al., in Ref. 6, p. 1259.

    Google Scholar 

  32. A.R. Jones and N. Hansen, Acta Metall., 29 (1981), p. 589.

    CAS  Google Scholar 

  33. T. Gladman, Proc. Roy. Soc. (London), 294A (1966), p. 298.

    Google Scholar 

  34. A.X. Ghosh and R. Raj, Acta Metall., 29 (1981), p. 607.

    CAS  Google Scholar 

  35. Y. Combres and Ch. Levaillant, Metal. Trans 22A, 83 (1991).

    Google Scholar 

  36. O.A. Kaibyshev, I.V. Kazachkov, and S.Ya Salikhov, Acta Metall., 26 (1978), pp. 1887–1894.

    CAS  Google Scholar 

  37. R.E. Goforth, V. Segan, and T. Hartwig, Superplasticity and Superplastic Forming 1995, ed. A.X. Ghosh and T.R Bieler (Warrendale, PA: TMS, 1995), pp. 25–32.

    Google Scholar 

  38. R.Z. Valiev, N.A. Krasilnikov, and N.K Tsenev, Mater. Sci. Eng., A137 (1991), p. 35.

    CAS  Google Scholar 

  39. A.K. Mukherjee, J.E. Bird, and J.E. Oom, Trans. ASM, 62 (1969), p. 155.

    CAS  Google Scholar 

  40. P.S. Nichols, Acta Metall., 28 (1980), p. 663.

    CAS  Google Scholar 

  41. N.Q. Chinh et al., J. Mater. Sci., 29 (1994), pp. 2341–2344.

    CAS  Google Scholar 

  42. H.J. Frost and M.P. Ashby, Deformation Mechanism Maps (London: Pergamon Press, 1982), p. 21.

    Google Scholar 

  43. A.K. Mukherjee, Mater. Sci. Eng., 8 (1975), pp. 83–89.

    Google Scholar 

  44. A. Ball and M.M. Hutchinson, Metal Sci. J., 3 (1969), pp. 1–7.

    Google Scholar 

  45. M.G. Zelin, T.R. Bieler, and A.X. Mukherjee, Metall. Trans., 24A (1993), pp. 1208–1212.

    CAS  Google Scholar 

  46. R.C. Koeller and R. Raj, Acta Metall., 26 (1978), p. 1551.

    CAS  Google Scholar 

  47. T. Mori, M. Okabe, and T. Mura, Acta Metall., 28 (1980), p. 319.

    Google Scholar 

  48. A.M. Brown and M.P. Ashby, Acta Metall., 28 (1980), p. 1085.

    CAS  Google Scholar 

  49. C.P. Cutler et al., Acta Metall., 22 (1974), p. 665.

    CAS  Google Scholar 

  50. Z. Jin and T.R Bieler, Advances in Superplasticity and Superplastic Forming, ed. N. Chandra, H. Garmestani, R.E. Goforth (Warrendale, PA: TMS, 1993), pp. 121–132.

    Google Scholar 

  51. P.N. Kalu and S. Hales, Advances in Hot Deformation Textures and Microstructures, ed. J.J. Jonas, T.R Bieler, and K.J. Bowman (Warrendale, PA: TMS, 1994), pp. 349–372, 385-396.

    Google Scholar 

  52. W.J. Kim, E. Taleff, and 0.D. Sherby, Scripta Metall. Mater., 32 (1995), pp. 1625–1630.

    Google Scholar 

  53. M. Mabuchi and K. Higashi, Mater. Sci. Eng., A179-80 (1994), p. 625.

    Google Scholar 

  54. M. Mabuchi and K. Higashi, Phil Mag Letters, 70 (1994), pp. 1–6.

    CAS  Google Scholar 

  55. K. Higashi et al., Scripta Metal. Mater., 32 (1995), pp. 1079–1084.

    Google Scholar 

  56. K. Higashi and M. Mabuchi, Mater. Sci. Eng., A176 (1994), p. 461.

    Google Scholar 

  57. K. Higashi, T.G. Nieh, and J. Wadsworth, Mater. Sci. Eng., A188 (1994), p. 167.

    CAS  Google Scholar 

  58. J. Pilling and N. Ridley, Res Mech., 23 (1988), p. 31.

    CAS  Google Scholar 

  59. M. Mabuchi, private communication.

  60. P. Friedman, T. Chanda, and A.K. Ghosh, Superplasticity and Superplastic Forming 1995, ed. A.K. Ghosh and T.R Bieler (Warrendale, PA: TMS, 1995), pp. 189–196.

    Google Scholar 

  61. Chin Liu and Yi Shi-Gong, Mater Sci and Tech., 6 (1990), p. 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieler, T.R., Mishra, R.S. & Mukherjee, A.K. High-strain-rate superplasticity in aluminum-matrix composites. JOM 48, 52–57 (1996). https://doi.org/10.1007/BF03221384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221384

Keywords

Navigation