Skip to main content
Log in

Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

  • Structural Composite
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.S. Petty and T.G. Fecke, “HPTET Materials and Structures-Goals and Progress” (NASA CP 10082, 1991), p. 2–1.

    Google Scholar 

  2. T.M.F. Ronald, “Overview of NASP Materials and Structures Program,” in Ref. 1, p. 3–l.

  3. J.R Stephens, D.W. Petrasek, and R.H. Titran, “Refractory Metals AHoys and Composites for Space Power Systems” (NASA TM 100946, 1988)

    Google Scholar 

  4. W.D. Brentnall, D.J. Moracz, and L.J. Toth, “Metal Matrix Composites for High Temperature Turbine Blades” (TRW Report No. ER-7722-F, 1975).

    Google Scholar 

  5. W.D. Brentnalt “Metal Matrix Composites for High Temperature Turbine Blades” (Warminster, PA: NADC Report No. 76225-30, 1976).

    Google Scholar 

  6. D.M. Essock, “FRS Composites for Advanced Gas Turbine Engine Components” (Warminster, PA: NADC Report No, 77015-30, 1979).

    Google Scholar 

  7. J.N. Fleck, “Fabrication of Tungsten-Wire/FeCrAIY-Matrix Composites Specimens” (TRW Report No. ER-8076, 1978).

    Google Scholar 

  8. J.J. Petrovic, “Oxidation Properties of Tungsten Fiber Reinforced Nickel Base Alloys at 2000°F,” memorandum to Head, Fiber and Laminate Section, Materials and Structures Division, NASA Lewis Research Center, 1 September 1967.

  9. M.E. EI-Dashan, D.P. Whittle, and J. Stringer, “The Oxidation and Hot Corrosion Behavior of Tungsten-Fiber Re;inforced Composites,” Oxid. Met., 9 (1975), p. 45.

    Google Scholar 

  10. C.H. Gay, “Hardware Designers’ Overview of TungstenFiber Reinforced Superalloy Composites for Turbojet Engines” (NASA CR-167850, 1982).

    Google Scholar 

  11. W.O. Klopp, W.K. Witzke, and P.L. Raffo, “Mechanical Properties of Dilute Tungsten-Rhenium Alloys” (NASA TN D-3483, September 1966).

    Google Scholar 

  12. S.L. Rubenstein, “Effects of Composition and Heat Treatment on High-Temperatures Strength of Arc-Melted Tungsten- Hafnium-Carbon Alloys” (N ASA TN D-4379, 1968).

    Google Scholar 

  13. M. Garfinkle, W.K. Witzke, and W.D. Klopp, “Superplasticity in Tungsten-Rhenium Alloys” (NASA TN D-4728, 1968).

    Google Scholar 

  14. P.L. Raffo, “Exploratory Study of Mechanical Properties and Heat Treatment of Molybdenum-Hafnium-Carbon Alloys” (NASA TN D-5025, 1969).

    Google Scholar 

  15. W.D. Klopp and W.R. Witzke, “Mechanical Properties of Arc-Melted Tungsten-Rhenium-Hafnium-Carbon Alloys” (NASA TN D-5348, 1969)

    Google Scholar 

  16. D.W. Petrasek and J.K. Stephens, “Fiber Reinforced Superalloys for Rocket Engines” (NASA TM 100880, 1988).

    Google Scholar 

  17. S.L. Draper, D.J. Gaydosh, and A. Chulya, “Tensile Behaviorof Alumina-Reinforced FeAI and FeCrAIY,” in Ref. 1, p,42–l.

  18. K.H. Titran, T.L. Grobstein, and D.L. Ellis, “Advanced Materials for Space Nuclear Power Systems” (AIAA-91- 3530,1991).

    Google Scholar 

  19. D.W. Petrasek and R.H. Titran, “Creep BehaviorofTungsten/ Niobiumand Tungsten/Niobium-l Percent Zirconium Composites” (NASA TM 100804, 1988).

    Google Scholar 

  20. J.R. Stephens, D.W. Petrasek, and R.H. Titran, “Refractory Metal Alloys and Composites for Space Power Systems,” Int. J. Ref. Mel. and Hard Mal., 9 (1990), p. 96.

    CAS  Google Scholar 

  21. R.H. Titran and I. Grobstein, “Advanced Refractory Metals and Composites for Extraterrestrial Power Systems,” JOM, 42 (8) (1990), p. 8.

    Article  Google Scholar 

  22. D.L. McDanels and J.O. Diaz, “Exploratory Feasibility Studies of Graphite Fiber Reinforced Copper Matrix Composites for Space Power Radiator Panels” (NASA TM-102328, 1989).

    Google Scholar 

  23. D.L. Ellis and D.L. McDanels, “Thermal Conductivity and Thermal Expansion of Graphite Fiber/Copper Matrix Composites” (NASA TM 105233, 1991)

    Google Scholar 

  24. L.J. Westfall and D.W. Petrasek, “Fabrication and Preliminary Evaluation of Tungsten Fiber Reinforced Copper Composite Combustion Chamber Liners” (NASA TM 100845, 1988)

    Google Scholar 

  25. F. Colucci, “Hypersonic Materials,” Aerospace Composites and Materials, 3 (1991), p, 4.

    Google Scholar 

  26. D.L. Ellis and G.M. Michal, “Precipitation Strengthened High Strength, High Conductivity Cu-Cr-Nb Alloys Produced by Chill Block Melt Spinning” (NASA CR 185144, 1989).

    Google Scholar 

  27. K.K. Karasek and J. Bevk, “High Temperature Strength of In Situ Formed Cu-Nb Multifilamentary Composites,” Scripta Met., 13 (1979), p. 259.

    CAS  Google Scholar 

  28. F.H. Froes, “Aerospace Materials for the Twenty-First Century,” Swiss Materials, 2 (1990), p. 23.

    Google Scholar 

  29. A.M. Johnson and P.K. Wright, “Application of Advanced Materials to Aircraft Gas Turbine Engines” (AIAA 90-2281, 1990).

    Google Scholar 

  30. C. Bassi, J.A. Peters, and J. Wittenauer, “Processing Titanium Aluminide Foils,” JOM, 41 (9) (1989), p. 18.

    Article  CAS  Google Scholar 

  31. R.A. MacKay, P.K. Brindley, and F.H. Froes, “Continuous Fiber-Reinforced Titanium Aluminide Composites,” JOM, 43 (5) (1991). p. 23.

    Article  CAS  Google Scholar 

  32. P.A. Bartolotta and P.K. Brindley, “High Temperature Fatigue Behaviorof a SiC/Ti-24AI-11 Nb Composite” (NASA TM 103157, 1990).

    Google Scholar 

  33. S.J. Balsone, “The Effect of Elevated Temperature Exposure Ion the Tensile Creep Properties of Ti-24AI-IlNb,” Oxidation of High-Temperature Intermetallics, ed.T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 219.

    Google Scholar 

  34. P.K. Brindley, R.A. MacKay, and P.A. Bartolotta, “Thermal Cycling and Isothermal Fatigue of SiC/Ti-24AI-11Nb” (NASA CP 10051, 1990), p. 38–1.

    Google Scholar 

  35. R.G. Rowe, “Ti,AINb-Based Alloys Outperform Conventional Titanium Aluminides,” Adv. Mat. & Proc., 141 (March 1992), p. 33.

    Google Scholar 

  36. K.T.V. Rao, G.R. Odette, and R.O. Ritchie,“On the Contrasting Role of Ductile-Phase Reinforcements on the Fracture Toughness and Fatigue-Crack Propagation Behaviour ofTiNb/y-TiAI Intermetallic Matrix Composites,” Acta Met. et Mat., 40 (1992), p. 353.

    CAS  Google Scholar 

  37. Y.W. Kim and D.M. Dimiduk, “Progress in the Understanding of Gamma Titanium Aluminides,” JOM, 43 (8) (1991), p. 40.

    Article  CAS  Google Scholar 

  38. W. Wunderlich, T. Kremser, and G. Frommeyer, “Enhanced Plasticity by Deformation Twinning of Ti-Al-Base Alloys with Cr and Si,” Z. Metallkunde, 81 (1990), p. 802.

    CAS  Google Scholar 

  39. G.H. Meier and D. Appalonia, “Oxidation of Ti-Base Alloys,” Oxidation of High-Temperature Intermetallics, ed.T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 185.

    Google Scholar 

  40. G. Welsch and A.I. Kahveci, “Oxidation Behavior of Titanium Aluminide Alloys,” Oxidation of High-Temperature lnfermetallics, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 207.

    Google Scholar 

  41. H. Mabuchi, K. Hirukawa, and Y. Nakayama, “Formation of Structural Li2 Compounds in TiA13-Base Alloys Containing Mn” Scripla Met., 23 (1989), p. 1761.

    CAS  Google Scholar 

  42. L.J. Parfitt et al., “Oxidation Behavior of Cubic Phases Formed by Alloying AI,Ti with Cr and Mn.” Scripla Met. et Mat., 25 (1991), 727.

    CAS  Google Scholar 

  43. R. Darolia, “NiAI Alloys for High-Temperature Structural Applications,” JOM, 43 (3) (1991), p. 44.

    Article  CAS  Google Scholar 

  44. J.O. Whittenberger, E. Arzt,and M.J. Luton, “Preliminary Investigation of a NiAI Composite Prepared by Cryomilling.” J. Mat, Res., 5 (1990), p. 271.

    CAS  Google Scholar 

  45. J.D. Whittenberger, E. Arzt, and M.J. Luton, “1300 K Compressive Properties of a Reaction Milled NiAI-AIN Composite,” J. Mat. Res., 5 (1990), p. 2819.

    CAS  Google Scholar 

  46. J.O. Whittenberger, K.S. Kumar,and S.K. Mannan, “1200 and 1300 K Slow Plastic Compression Properties of Ni-SOAI Composites,” Mat. at High Temperalures, 9 (1991), p. 3.

    CAS  Google Scholar 

  47. J.O. Whittenberger et al., “1000-1300 K Slow Strain Rate PropertiesofNiAI Containing Dispersed TiB,and HfB,” Mat. Sci. and Eng., A138 (1991), p. 83.

    CAS  Google Scholar 

  48. S.C. Jha, R. Ray, and J.D. Whittenberger, “Carbide-Dispersion- Strengthened B2 NiAI.” Mat, Sci. and Eng. A119 (1989), p. 103.

    CAS  Google Scholar 

  49. J.O. Whittenberger, D.J. Gaydosh, and K.S. Kumar, “1300 K Compressive Properties of Several Dispersion Strengthened NiAI Materials,” J. Mat. Sci., 25 (1990) p. 2771.

    CAS  Google Scholar 

  50. J.O. Whittenberger et al. “Elevated Temperature Slow Plastic Deformation of NiAl-TiB2 Particulate Composites at 1200 and 1300 K” J. Mat. Sci., 25 (1990) p. 35.

    CAS  Google Scholar 

  51. L. Walter and H.E. Cline, “The Effect of Solidification Rate on Structure and High Temperature Strength of the Eutectic NiAI-Cr,” Met, Trans., 1 (1970), p. 1221.

    CAS  Google Scholar 

  52. J.D. Whittenberger et al “Compressive Strength of Directionally Solidified NiAI-NiAINb Intermetallics at 1200 and 1300 K,” Scripta Met. el Mat., 26 (1992), p. 987.

    CAS  Google Scholar 

  53. R.R. Bowman et a1. “Effects of Interfacial Properties on the Mechanical Behavior of NiAI Based Composites,” in Ref. 1, p. 43-1.

  54. R.R. Bowman, “Influence of Interfacial Characteristics on the Mechanical Properties of Continuous Fiber Reinforced NiAI Composites” (Paper presented at the MRS 1992 Spring Meeting, San Francisco, CA. 27 April 1992)

  55. J.J. Petrovic, “A Comparative Overview of Molybdenum Disilicide Composites” (Paper presented at the First Structural High-Temperature Sihcides Workshop. Gaithersburg, MD, 4 November 1991).

  56. J.J. Petrovic, D,H. Carter, and F.O. Gac, “Molybdenum Disilicide Matrix Composite,” U.S. patent 4,927,792

  57. J.J. Petrovic, RE. Honnell, and W.s, Gibbs, “Molybdenum Disilicide Alloy Matrix Composite,” U.S. patent 4,970,179.

  58. S. Maloy et al., “Carbon Additions to Molybdenum Disilicide: Improved High-Temperature Mechanical Properties,” J. Amer. Cer. Soc., 74 (1991). p. 2704

    CAS  Google Scholar 

  59. S. Bose, “Engineering Aspect of Creep Deformation of Molybdenum Disilicide,” accepted for publication in Mat. Sci. and Eng, (A).

  60. M.J. Maloney and R.J. Hecht, “Development of Continuous Fiber Reinforced Molybdenum Disilicide Base Composites” (Paper presented at the First Structural HighTemperature Silicides Workshop. Gaithersburg, MO, 4 November 1991)

  61. S. Bose and R.J. Hecht, “Thermal Properties of MoSi, and SiC Whisker Reinforced MoSi2,” accepted for publication in J. Mat. Sci., 27 (1992).

    Google Scholar 

  62. G.H. Meier, “Fundamentals of the Oxidation of HighTemperature Intermetallics,” Oxidation of High-Temperature inlermetallics, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doychak, J. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems. JOM 44, 46–51 (1992). https://doi.org/10.1007/BF03222256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222256

Keywords

Navigation