Skip to main content
Log in

Forming continuous alumina scales to protect superalloys

  • Corrosion and Erosion
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of continuous Al2O3 scales on alloys via selective oxidation is an extremely effective approach to obtain high-temperature oxidation resistance. Depending on the alloy system, it may be necessary to optimize the selective oxidation process. For all alloy systems, improvements in oxidation resistance can be obtained by optimizing the type and concentrations of reactive elements and by controlling the concentration of sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Wood, Oxid. Metals, 2 (1970), p. 11.

    CAS  Google Scholar 

  2. G.C. Wood, Oxidation of Metals and Alloys (Metals Park, OH: ASM, 1971), p. 201.

    Google Scholar 

  3. C.S. Giggins and F.S. Pettit, J. Electrochem. Soc., 118 (1971), p. 1782.

    CAS  Google Scholar 

  4. B.H. Kear et al., Oxid. Metals, 3 (1971), p. 557.

    CAS  Google Scholar 

  5. G.R. Wallwork and A.Z. Hed, Oxid. Metals, 3 (1971), p. 171.

    CAS  Google Scholar 

  6. C.A. Barrett and C.E. Lowell, Oxid. Metals, 11 (1977), p. 199.

    CAS  Google Scholar 

  7. J.L. Smialek and G.H. Meier, “High Temperature Oxidation, ” Superalloys II, ed. C.T. Sims, N.S. Stoloff, W.C. Hagel (New York: John Wiley and Sons, 1987), p. 295.

    Google Scholar 

  8. P. Kofstad,High Temperature Corrosion (New York: Elsevier Applied Science, 1988), pp. 342–378.

  9. A. Rahmel and J. Spencer, Oxid. Metals, 35 (1991), p. 53

    CAS  Google Scholar 

  10. K.L. Luthra, Oxid. Metals, 36 (1991), p. 475.

    CAS  Google Scholar 

  11. E.J. Feiten and F.S. Pettit, “High Temperature Oxidation Behavior of Directionally Solidified Eutectic Alloys,” Failure Modes in Composites II, ed. James N. Fleck and Richard L. Mehan (Warrendale, PA: TMS, 1974), p. 220.

    Google Scholar 

  12. E.J. Feiten and F.S. Pettit, Oxid. Metals, 10, (1976), p. 189.

    Google Scholar 

  13. T.A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, J. Electrochem. Soc., 131 (1984), p. 923.

    CAS  Google Scholar 

  14. J.L. Smialek and R. Gibala, “Diffusion Processes in A12O3 Scales: Void Growth, Grain Growth and Scale Growth,” High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: National Assoc. of Corrosion Engineers, 1983), p. 274.

    Google Scholar 

  15. J.K. Tien and F.S. Pettit, Met. Trans., 3 (1972), p. 1587.

    CAS  Google Scholar 

  16. H.J. Grabke, D. Wiemer, and H. Viefhaus, Appl. Surf. Sci 47 (1991), p. 243.

    CAS  Google Scholar 

  17. C. Wagner, Corr. Sci., 5 (1965), p. 751.

    CAS  Google Scholar 

  18. C.S. Giggins and F.S. Pettit, Oxid. Metals, 14, (1980), p. 363.

    CAS  Google Scholar 

  19. N.S. Choudhury, H.C. Graham, and J.W. Hinze, Properties of High Temperature Alloys, ed. Z.A. Foroulis and F.S. Pettit (Pennington, NJ: Electrochemical Society, 1976), p. 668.

    Google Scholar 

  20. J. Rakowski, Masters thesis, University of Pittsburgh 1994.

    Google Scholar 

  21. C.S. Giggins and F.S. Pettit, TMS-AIME 245, (New York-TMS-AIME, 1969), p. 2509.

  22. M.W. Brumm, H.J. Grabke, and B. Wagemaum, Corr. Sci., 36 (1994), p. 37.

    CAS  Google Scholar 

  23. D.P. Whittle and J. Stringer, Phil. Trans. Roy. Soc Lond A295 (1980), p. 309.

    Google Scholar 

  24. F.S. Pettit, “What Are the Effects of Oxide Dispersions in Cr and Al-Containing Alloys on the Kinetics, Growth Direction, Mode of Transport, and Adhesion of the Scale?” AGARD Proceedings No. 120 on High Temperature of Aerospace Alloys (Lyngby, Denmark: Technical Editing and Reproductions, Ltd., Harford House, 1972).

    Google Scholar 

  25. J. Stringer, Met. Rev., 11 (1966), p. 113.

    Google Scholar 

  26. E.J. Feiten, J. Electrochem. Soc., 108 (1961), p. 490.

    Google Scholar 

  27. F.A. Golightly, F.H. Stott, and G.C. Wood, Oxid. Met., 10 (1976), p. 163.

    CAS  Google Scholar 

  28. H. Pfeiffer, Werkst. Korros., 8 (1957), p. 574.

    CAS  Google Scholar 

  29. J.E. McDonald and J.G. Eberhardt, Trans. TMS-AIME, 233 (1965), p. 512.

    CAS  Google Scholar 

  30. J.E. Antill and K.A. Peakall, J. Iron & Steel Inst., 205 (1967) p. 1136.

    CAS  Google Scholar 

  31. A.W. Funkenbresch, J.G. Smeggil, and N.S. Bornestein, Met. Trans., 16A, (1985), p. 1164.

    Google Scholar 

  32. J.S. Smeggil, A.W. Funkenbresch, and N.S. Bornestein, Met. Trans., 17A, (1986), p. 923.

    CAS  Google Scholar 

  33. B.K. Tubbs and J.L. Smialek, “Effect of Sulfur Removal on Scale Adhesion to PW 1480,” Symposium on Corrosion and Particle Erosion at High Temperatures, ed. V. Srinivasan and K. Vedula (Warrendale, PA: TMS, 1989), p. 459.

    Google Scholar 

  34. R.V. McVay et al, “Oxidation of Low Sulfur Single Crystal Nickel-Base Superalloys,” Superalloys 1992, ed. S.D. Antolovich et al. (Warrendale, PA: TMS, 1992), p. 807.

    Google Scholar 

  35. K. Ohmura, et al., “Effect of Lanthanoid on Oxidation Behavior of Fe-Cr-Al Foil,” High Temperature Corrosion of Advanced Materials and Protective Coatings, ed. Y. Saito, B. Onay, and T. Maruyama (New York: North Holland Publishers, 1992), p. 167.

    Google Scholar 

  36. M.C. Stasik et al., Scripta Met. et Mater., 31, (1994); p. 1645.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birks, N., Meier, G.H. & Pettit, F.S. Forming continuous alumina scales to protect superalloys. JOM 46, 42–46 (1994). https://doi.org/10.1007/BF03222664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222664

Keywords

Navigation