Skip to main content
Log in

Hot corrosion of materials: Fundamental studies

  • Corrosion and Erosion
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hot corrosion is the accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit. Because of its high thermodynamic stability in the mutual presence of sodium and sulfur impurities in an oxidizing gas, Na2SO4 is often found to be the dominant salt in the deposit. The corrosive oxyanion-fused salts are usually ionically conducting electrolytes that exhibit an acid/base chemistry, so that hot corrosion must occur by an electrochemical mechanism that may involve fluxing of the protective oxides. With the aid of high-temperature reference electrodes to quantify an acid/base scale, the solubilities for various metal oxides in fused Na2SO4 have been measured, and these show remarkable agreement with the theoretical expectations from the thermodynamic phase stability diagrams for the relevant Na-Metal-S-O systems. The solubilities of several oxides infused Na2SO4-NaVO3 salt solutions have also been measured and modeled. Such information is important both in evaluating the corrosion resistance of materials and in interpreting any oxide fluxing/reprecipitation mechanisms. Various electrochemical measurements have identified the S2O7 2− anion (dissolved SO3) as the oxidant that is reduced in the hot corrosion process. Electrochemical polarization studies have elucidated the corrosion reactions and clarified the corrosion kinetics of alloys. Mechanistic models for Type I and Type II hot corrosion are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Reid, R.C. Corey, and BJ. Cross, Trans. ASME, 67 (1945), p. 279.

    CAS  Google Scholar 

  2. F.J. Wall and S.T. Michael, ASTM Spec. Tech. Publ. STP 421 (1967), p. 223.

    Google Scholar 

  3. E. Erdos, Deposition and Corrosion in Gas Turbines, ed. A.B. Hart and A.J.B. Cutler (London: Applied Science Publishers, 1973), p. 115.

    Google Scholar 

  4. K.J. Kohl et al., J. Electrochem. Soc., 126 (1979), p. 1054.

    CAS  Google Scholar 

  5. K.L. Luthra and H.S. Spacil, J. Electrochem. Soc., 129 (1982), p. 649.

    CAS  Google Scholar 

  6. E.L. Simons, G.V. Browning, and H.A. Liebhafsky, Corrosion, 11 (1955), p. 505.

    Google Scholar 

  7. A.U. Seybolt, Trans. AIME, 242 (1968), p. 1955.

    Google Scholar 

  8. N.S. Bornstein and M.A. DeCrescente, Trans. AIME, 245 (1969), p. 583.

    Google Scholar 

  9. N.S. Bornstein and M.A. DeCrescente, Met. Trans.,2 (1971), p. 2875.

    CAS  Google Scholar 

  10. J.A. Goebel and F.S. Pettit, Met. Trans., 1 (1970), p. 1943.

    CAS  Google Scholar 

  11. J.A. Goebel, F.S. Pettit, and G.W. Goward, Met. Trans., 4 (1973), p. 261.

    CAS  Google Scholar 

  12. J. Stringer, Annual Review of Materials Sci., 7, ed. R.A. Huggins (Palo Alto, CA: Annual Review Inc., 1977), p. 449.

    Google Scholar 

  13. J. Stringer, Materials Sci. Techn., 3 (1987), p. 482.

    CAS  Google Scholar 

  14. F.S. Pettit and C.S. Giggins, “Hot Corrosion,” Superalloys II, ed. C.T. Sims, N.S. Stoloff, and W.C. Hagel (New York: Wiley Publ., 1987), p. 327.

    Google Scholar 

  15. R.A. Rapp, Corrosion, 42 (1986), p. 568.

    CAS  Google Scholar 

  16. R.A. Rapp, “Hot Corrosion of Materials,” Selected Topics in High Temperature Chemistry, ed. O. Johannesen and A.G. Andersen (Amsterdam: Elsevier, 1989), p. 291.

    Google Scholar 

  17. C.O. Park and R.A. Rapp, J. Electrochem. Soc., 133 (1986), p. 1636.

    CAS  Google Scholar 

  18. D. Inman and D.M. Wrench, Brit. Corros. J., 1 (1966), p. 246.

    CAS  Google Scholar 

  19. D.A. Shores and R.C. John, J. Appl. Electrochem., 10 (1980), p. 275.

    CAS  Google Scholar 

  20. P.P. Leblanc and R.A. Rapp, J. Electrochem. Soc., 139 (1992), p. L31.

    CAS  Google Scholar 

  21. P.P. Leblanc and R.A. Rapp, J. Electrochem. Soc., 140 (1993), p. L41.

    CAS  Google Scholar 

  22. D.K. Gupta and R.A. Rapp, J. Electrochem. Soc., 127 (1980), p. 2194 and 2656.

    CAS  Google Scholar 

  23. Y.S. Zhang and R.A. Rapp, J. Electrochem. Soc., 132 (1985), p. 734 and 2498.

    CAS  Google Scholar 

  24. Y.S. Zhang, J. Electrochem. Soc., 133 (1986), p. 655.

    CAS  Google Scholar 

  25. P.D. Jose, D.K. Gupta, and R.A. Rapp, J. Electrochem. Soc., 132 (1985), p. 735.

    CAS  Google Scholar 

  26. D.Z. Shi and R.A. Rapp, J. Electrochem. Soc., 133 (1986), p. 849.

    CAS  Google Scholar 

  27. M.L. Deanhardt and K.H. Stern, J. Electrochem. Soc., 128 (1981), p. 2577.

    CAS  Google Scholar 

  28. A.K. Misra, D.P. Whittle, and W.L. Worrell, J. Electrochem. Soc., 129 (1982), p. 1840.

    CAS  Google Scholar 

  29. M.L. Deanhardt and K.H. Stern, J. Electrochem. Soc., 129 (1982), p. 2228.

    CAS  Google Scholar 

  30. N.S. Jacobson and J.L. Smialek, J. Amer. Ceram. Soc., 68 (1985), p. 432.

    CAS  Google Scholar 

  31. N.S. Jacobson, J. Amer. Ceram. Soc., 76 (1993), p. 3.

    CAS  Google Scholar 

  32. Y.S. Hwang and R.A. Rapp,J. Electrochem. Soc., 137 (1990), p. 1276.

    CAS  Google Scholar 

  33. Y.S. Zhang and R.A. Rapp, Corrosion, 43 (1987), p. 348.

    CAS  Google Scholar 

  34. Y.S. Hwang and R.A. Rapp, Corrosion, 45 (1989), p. 933.

    CAS  Google Scholar 

  35. R.A. Rapp and Y.S. Zhang, “Electrochemical Studies of Hot Corrosion of Materials,” Proc Intern. Corr. Conf. (Merida, Mexico: 1993)

    Google Scholar 

  36. R.L. Jones, D.B. Nordman, and S.T. Gadomski, Met. Trans., 16A (1985), p. 303.

    CAS  Google Scholar 

  37. R.L. Jones, S.R. Jones, and C.E. Williams, J. Electrochem. Soc., 132 (1985), p. 1499.

    Google Scholar 

  38. R.L. Jones, C.E. Williams, and S.R. Jones, J. Electrochem. Soc., 133 (1986), p. 227.

    CAS  Google Scholar 

  39. R.L. Jones and D. Mess,J. Amer. Ceram. Soc., 75 (1992), p. 1818.

    CAS  Google Scholar 

  40. R.L. Jones, High Temp. Tech., 6 (1988), p. 187.

    CAS  Google Scholar 

  41. M. Seiersten and P. Kofstad, Mater. Sci. Tech., 3 (1987), p. 576.

    CAS  Google Scholar 

  42. A.S. Nagelberg, J. Electrochem. Soc., 132 (1985), p. 2502.

    CAS  Google Scholar 

  43. F. Mansfeld and J.V. Kenkel, Corr. Sci., 16 (1976), p. 111.

    CAS  Google Scholar 

  44. F. Mansfeld and J.V. Kenkel, Corrosion, 33 (1977), p. 238.

    Google Scholar 

  45. R. Andresen, J. Electrochem. Soc., 126 (1979), p. 328.

    CAS  Google Scholar 

  46. D.A. Shores and W.C. Fang,J. Electrochem. Soc., 128 (1981), p. 346.

    CAS  Google Scholar 

  47. W.C. Fang and R.A. Rapp,J. Electrochem. Soc., 130 (1983), p. 2335.

    CAS  Google Scholar 

  48. H. Numata, A. Nishikata, and S. Haruyama, Proc. JIMIS-3, Trans. Japan Inst. Suppl. (1983), p. 303.

    Google Scholar 

  49. X. Zheng and R.A. Rapp,J. Electrochem. Soc., 140 (1993), p. 2857.

    CAS  Google Scholar 

  50. H. Numata and S. Haruyama, Corrosion, 44 (1988), p. 7249.

    Google Scholar 

  51. J. Kupper and R.A. Rapp, Werkstoffe und Korrosion, 38 (1987), p. 674.

    Google Scholar 

  52. J.C. Nava, D.Z. Shi, and R.A. Rapp, “Electrochemical Reactions of NaVO3 and Na2CO4 Solutes in Na2SO4,” High Temperature Materials Chemistry IV (Pennington, NJ: Electrochem. Soc., 1987), p. 1.

    Google Scholar 

  53. D.Z. Shi and R.A. Rapp, Werkstoffe und Korrosion, 41 (1990), p. 215.

    CAS  Google Scholar 

  54. D.A. Shores, Corrosion, 31 (1975), p. 434.

    CAS  Google Scholar 

  55. A. Rahmel, M. Schmidt, and M. Schorr, Oxid. Metals, 18 (1982), p. 195.

    CAS  Google Scholar 

  56. W.T. Wu, A. Rahmel, Oxid. Metals, 19 (1983), p. 201.

    CAS  Google Scholar 

  57. W.T. Wu, A. Rahmel, and M. Schorr, Oxid. Metals, 22 (1984), p. 59.

    CAS  Google Scholar 

  58. W.T. Wu, J. Zhang, and Y. Niu, Proc 11th Intern. Cong. Mater. Corr. (Florence, Italy, April 2–6,1990), p. 1475.

    Google Scholar 

  59. Y. Niu, J. Zhang, and W.T. Wu, High Temperature Corrosion and Protection, ed. H. Guan, W.T. Wu, J. Shen, and T. Li (Shenyang, China: Liaoning Sci. Techn. Publ. House, 1990), p. 201.

    Google Scholar 

  60. R.A. Rapp and K.S. Goto, “Hot Corrosion of Metals by Molten Salts,” Molten Salts I, ed. J. Braunstein and J.R. Selman (Pennington, NJ: Electrochem. Soc., 1981), p. 159.

    Google Scholar 

  61. D.A. Shores, “New Perspective on Hot Corrosion Mechanisms,” High Temperature Corrosion, NACE-6, ed. R.A. Rapp (Houston, TX: NACE, 1983), p. 493.

    Google Scholar 

  62. N. Otsuka and R.A. Rapp, J. Electrochem. Soc., 137 (1990), p. 46.

    CAS  Google Scholar 

  63. Y.M. Wu and R.A. Rapp, J. Electrochem. Soc., 138 (1991), p. 2683.

    CAS  Google Scholar 

  64. Y.S. Zhang and R.A. Rapp, “Solubility of CeO2 in Molten Na2SO4-10 mol.% NaVO3 salt solution at 900°C” (Paper to be presented at 9th Intern. Symp. Molten Salts, San Francisco, 22–27 May 1994).

    Google Scholar 

  65. G.C. Fryburg et al., J. Electrochem. Soc., 129 (1982), p. 571.

    CAS  Google Scholar 

  66. G.C. Fryburg, F.J. Kohl, and C.A. Stearns, J. Electrochem. Soc., 131 (1984), p. 2985.

    CAS  Google Scholar 

  67. K.L. Luthra and D.A. Shores, J. Electrochem. Soc., 127 (1980), p. 2202.

    CAS  Google Scholar 

  68. K.L. Luthra, High Temperature Corrosion, NACE-6, ed. R.A. Rapp (Houston, TX: NACE, 1983), p. 507.

    Google Scholar 

  69. K.L. Luthra, Met. Trans., 13A (1982), pp. 1647,1843, and 1853.

    Google Scholar 

  70. K.L. Luthra,J. Electrochem. Soc., 132 (1985), p. 1293.

  71. K.L. Luthra and J.H. Wood, Thin Solid Films, 119 (1984), p. 271.

    CAS  Google Scholar 

  72. Y.S. Zhang, L.Q. Shi, and S.T. Shih,J. Chin. Soc. Corr. Protec., 12 (1992), p. 189.

    Google Scholar 

  73. Y.S. Zhang, X.M. Li, L.Q. Shi, and S.T. Shih, J. Chin. Soc. Corr. Protec, 11 (1991), p. 17.

    Google Scholar 

  74. L.Q. Shi, Y.S. Zhang, and S.T. Shih, Corr. Sci., 33 (1992), p. 1427.

    CAS  Google Scholar 

  75. L.Q. Shi, Y.S. Zhang, and S.T. Shih, Oxid. Metals, 38 (1992), p. 385.

    CAS  Google Scholar 

  76. Y.S. Zhang, X.M. Li, T.L. Cao, and S.T. Shih, Corr. Sci. Protec Tech., 4 (1992), p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, R.A., Zhang, YS. Hot corrosion of materials: Fundamental studies. JOM 46, 47–55 (1994). https://doi.org/10.1007/BF03222665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222665

Keywords

Navigation