Skip to main content
Log in

Ordered intermetallic alloys, part I: Nickel and iron aluminides

  • Intermetallic and Composite
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article summarizes recent progress in research and development on nickel and iron aluminide intermetallic alloys. Ordered intermetallics possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle failure and poor fracture resistance limit their use as engineering materials. In recent years, efforts to understand this brittle fracture behavior have identified both intrinsic and extrinsic factors governing brittle fracture. Parallel work on alloy design using physical metallurgy principles has led to the development of aluminide alloys with improved mechanical and metallurgical properties for structural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., High Temperature Ordered Intermetallic Alloys (Pittsburgh, PA: MRS, 1985).

    Google Scholar 

  2. N.S. Stoloff et al., eds., High Temperature Ordered Intermetallic Alloys II (Pittsburgh, PA: MRS, 1987).

    Google Scholar 

  3. C.T. Liu et al., eds., High Temperature Ordered Intermetallic Alloys III (Pittsburgh, PA: MRS, 1989).

    Google Scholar 

  4. L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., High Temperature Ordered Intermetallic Allays IV (Pittsburgh, PA: MRS, 1991).

    Google Scholar 

  5. S.H. Whang et al., eds., High Temperature Aluminides and Intermetallics (Warrendale, PA: TMS, 1990).

    Google Scholar 

  6. S.H. Whang et al., “High-Temperature Aluminides and Intermetallics,” Mater. Sci. Eng., A152/A153 (1992).

    Google Scholar 

  7. O. Izumi, ed., Intermetallic Compounds—Structure and Mechanical Properties (Tokyo: JIM, 1991).

    Google Scholar 

  8. C.T. Liu, R.W. Cahn, and G. Sauthoff, eds., Ordered Intermetallics—Physical Metallurgy and Mechanical Behavior (Boston, MA: Kluwer Academic Publishers, 1992).

    Google Scholar 

  9. Y-W. Kim and R.R. Boyer, eds., Microstructure/Properties Relationships in Titanium Aluminides and Alloys (Warrendale, PA: TMS, 1991).

    Google Scholar 

  10. M. Yamaguchi and Y. Umakoshi, Prog. Mater. Sci., 34 (1) (1990), p. 1.

    CAS  Google Scholar 

  11. C.T. Liu, J.O. Stiegler, and F.H. Froes, “Ordered Intermetallics,” Metals Handbook, 10th ed., vol. 2 (Materials Park, OH: ASM, 1990), pp. 913–942.

    Google Scholar 

  12. N.S. Stoloff, Int. Met. Rev., 29 (3) (1984), p. 123.

    CAS  Google Scholar 

  13. I. Baker et al., eds., High Temperature Ordered Intermetallic Alloys V (Pittsburgh, PA: MRS, 1993).

    Google Scholar 

  14. S.M. Copley and B.H. Kear, Trans. Metall. Soc. AIMS, 239 (1967), p. 977.

    CAS  Google Scholar 

  15. P.H. Thornton, R.G. Davies, and T.L. Johnston, Metall. Trans., 1 (1970), p. 207.

    CAS  Google Scholar 

  16. V. Paidar, D.P. Pope, and V. Vitek, Acta Metall., 32 (1984), p. 435.

    CAS  Google Scholar 

  17. T.B. Massalski, ed. Binary Alloy Phase Diagrams, vol. 1 and 2 (Materials Park, OH: ASM, 1986).

    Google Scholar 

  18. Y. Mishima, S. Ochiai, and Y.M. Yodagama, Trans. JIM, 27 (1986), pp. 41–50.

    CAS  Google Scholar 

  19. S. Takeuchi and E. Kurarnoto, Acta Metall., 21 (1973), p. 415.

    CAS  Google Scholar 

  20. M.H. Yoo, Scr. Metall., 20 (1986), p. 915.

    CAS  Google Scholar 

  21. P.A. Flinn, Trans. AIMS, 218 (1960), p. 145.

    CAS  Google Scholar 

  22. M.H. Yoo, J.A. Horton, and C.T. Liu, Acta Metall., 36 (1988), p. 2935.

    CAS  Google Scholar 

  23. D.P. Pope, High Temperature Aluminides and Intermetallics, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 51.

    Google Scholar 

  24. P.B. Hirsch, in Ref. 8, p. 197.

    Google Scholar 

  25. K. Aoki and O. Izumi, Trans. Jpn. Inst. Met., 19 (1978), p. 203.

    CAS  Google Scholar 

  26. C.T. Liu, C.L. White, and I.A. Horton, Acta Metall., 33 (1985), p. 213.

    CAS  Google Scholar 

  27. T. Takasugi et al., Scr. Metall., 19 (1985), p. 551.

    CAS  Google Scholar 

  28. T. Ogura et al., Metall. Trans., 16A (1985), p. 441.

    CAS  Google Scholar 

  29. C.T. Liu, Scr. Metall., 27 (1922), p. 25.

    Google Scholar 

  30. C.T. Liu and W.C. Oliver, Scr. Metall., 25 (1991), p. 1933.

    CAS  Google Scholar 

  31. E.P. George, C.T. Liu, and D.P. Pope, Scr. Metall., 27 (1992), pp. 365–370.

    CAS  Google Scholar 

  32. C.T. Liu, Oak Ridge National Laboratory, unpublished research.

  33. T. Takasugi and O. Izumi, Acta Metall., 33 (1985), p. 1247.

    CAS  Google Scholar 

  34. T. Takasugi, O. Izumi, and N. Masahashi, Acta Metall., 33 (1985), p. 1259.

    CAS  Google Scholar 

  35. A.I. Taub et al., Scr. Metall., 20 (1986), p. 129.

    CAS  Google Scholar 

  36. A.I. Taub and C.L. Briant, in Ref. 2, p. 343.

    Google Scholar 

  37. A.I. Taub and C.L. Briant, Acta Metall., 35 (1987), p. 1597.

    CAS  Google Scholar 

  38. V. Vitek and S.P. Chen, Scr. Metall., 25 (1991), p. 1237.

    CAS  Google Scholar 

  39. V. Vitek et al., “Grain Boundary Chemistry and Intergranular Fracture,” Mater. Sci. Forum, 46 (1989), p. 237.

    CAS  Google Scholar 

  40. J.J. Kruisman, V. Vitek, and J.Th.M. De Hosson, Acta Metall., 36 (1989), p. 2729.

    Google Scholar 

  41. A.H. King and M.H. Yoo, in Ref. 1, p. 99.

    Google Scholar 

  42. T. Takasugi, N. Masahashi, and O. Izumi, Scr. Metall., 20 (1986), p. 1317.

    CAS  Google Scholar 

  43. N. Masahashi, T. Takasugi, and O. Izumi, Metall. Trans., 19A (1988), p. 353.

    CAS  Google Scholar 

  44. T. Takasugi, H. Suenaga, and O. Izumi, J. Mater. Sci., 26 (1991), p. 1179.

    CAS  Google Scholar 

  45. T. Takasugi and O. Izumi, Acta Metall., 34 (1986), p. 607.

    CAS  Google Scholar 

  46. C. Nishimura and C.T. Liu, Scr. Metall., 27 (1992), p. 1307.

    CAS  Google Scholar 

  47. C. Nishimura and C.T. Liu, Scr. Metall., 25 (1991), p. 791.

    CAS  Google Scholar 

  48. A. Aoki and O. Izumi, Nippon Kinzoku Gakkaishi, 43 (1979), p. 1190.

    CAS  Google Scholar 

  49. C.T. Liu and C.L. White, in Ref. 1, p. 365.

    Google Scholar 

  50. C.T. Liu and C.L. White, Acta Metall., 35 (1987), p. 643.

    CAS  Google Scholar 

  51. C.T. Liu and V.K. Sikka, J. Metals, 38 (1986), p. 19.

    CAS  Google Scholar 

  52. A.I. Taub, K.-M. Chang, and C.T. Liu, Scr. Metall., 20 (1986), p. 1613.

    CAS  Google Scholar 

  53. N.S. Stoloff et al., in Ref. 2, p. 247.

    Google Scholar 

  54. S. Ochiai, Y. Oya, and T. Suzuki, Acta Metall., 32 (1984), pp. 289–298.

    CAS  Google Scholar 

  55. R.W. Guard and J.H. Westbrook, Trans. AIMS, 215 (1959), pp. 807–814.

    CAS  Google Scholar 

  56. D.M. Dimiduk, Ph.D. thesis, Carnegie-Mellon University (1989).

    Google Scholar 

  57. D.M. Dimiduk et al., in Ref. 8, p. 237.

    Google Scholar 

  58. C.T. Liu et al., “Alloy Development and Mechanical Properties of Nickel Aluminide (N3Al) Alloys,” ORNL-6483 (Oak Ridge, TN: Martin Marietta Energy Systems, August 1988).

    Google Scholar 

  59. C.T. Liu, U.S. patent 5,108,700 (April 1992).

  60. C.T. Liu, Micon 86 (Philadelphia, PA: ASTM, 1988), p. 222.

    Google Scholar 

  61. A.I. Taub, K.M. Chang, and C.T. Liu, Scr. Metall., 20 (1986), p. 1613.

    CAS  Google Scholar 

  62. B.G. Gieseke and V.K. Sikka, Martin Marietta Energy Systems, unpublished research.

  63. Y.F. Han et al. (Paper presented at First Pacific Rim International Conference on Advanced Materials and Processing, Hangzhou, China, 23–27 June 1992).

  64. D.L. Anton, D.D. Pearson, and D.B. Snow, in Ref. 2, p. 287.

    Google Scholar 

  65. D.M. Shah and D.N. Duhl, in Ref. 2, p. 411.

    Google Scholar 

  66. S.E. Hsu et al., in Ref. 2, p. 275.

    Google Scholar 

  67. K. Vedula et al., in Ref. 1, p. 411.

    Google Scholar 

  68. J.L. Smialek, Metall. Trans. A 9A (1978), p. 309.

    CAS  Google Scholar 

  69. R. Darolia, J. Metals, 43 (3) (1991), p. 44.

    Article  CAS  Google Scholar 

  70. R.D. Noebe, R.R. Bowman, and M. V. Nathal, accepted for publication in Int. Met. Rev. (1993).

    Google Scholar 

  71. J.A. Nesbitt et al., Mater. Sci. Eng., A153 (1992), pp. 561–566.

    CAS  Google Scholar 

  72. C.A. Barrett, Oxid. Met., 30 (1988), p. 361.

    CAS  Google Scholar 

  73. A. Ball and R.E. Smallman, Acta Metall., 14 (1966), p. 1517.

    CAS  Google Scholar 

  74. N.J. Zaluzec and H.L. Fraser, Scr. Metall., 8 (1974), p. 1049.

    CAS  Google Scholar 

  75. I. Baka and E.M. Schulson, Metall. Trans. A, 15A (1984), p. 1129.

    Google Scholar 

  76. E.P. George and C.T. Liu, J. Mater. Res., 5 (1990), p. 754.

    CAS  Google Scholar 

  77. E.M. Grala, Mechanical Properties of Intermetallic Compounds, ed. J.H. Westbrook (New York: Wiley, 1960), p. 368.

    Google Scholar 

  78. I. Baker and P.R. Munroe, High Temperature Aluminides and Intermetallics, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 425.

    Google Scholar 

  79. K.H. Hahn and K. Vedula, Scr. Metall., 23 (1989), p. 7.

    CAS  Google Scholar 

  80. R.D. Noebe et al., High Temperature Ordered Intermetallic Alloys IV, ed. L.A. Johnson, D.P. Pope, and J.O. Stiegler (Pittsburgh, PA: MRS, 1991), p. 589.

    Google Scholar 

  81. R.R. Bowman et al., Metall. Trans. A, 23A (1992), p. 1493.

    CAS  Google Scholar 

  82. R.D. Noebe, C.L. Cullers, and R.R. Bowman, J. Mater. Res., 7 (1992), p. 605.

    CAS  Google Scholar 

  83. R. Darolia, D.F. Lahrman, and R.D. Field, Scr. Metall., 26 (1992), p. 1007.

    CAS  Google Scholar 

  84. R.D. Noebe and M.K. Behbehani, Scr. Metall., 27 (1992), p. 1795.

    CAS  Google Scholar 

  85. C.T. Liu et al., “Alloying Effects on Mechanical and Metallurgical Properties of NiAl,” Martin Marietta Energy Systems, unpublished research.

  86. J.E. Hack, J.M. Brzeski, and R. Darolia, Scr. Metall., 27 (1992), p. 1259.

    CAS  Google Scholar 

  87. R.E. Reed-Hill, Physical Metallurgy Principles, 2nd ed. (New York: Van Nostrand, 1973).

    Google Scholar 

  88. R. Jayaram and M.K. Miller, Surf. Sci., 266 (1992), p. 310.

    CAS  Google Scholar 

  89. J.D. Whittenberger, E. Arzt, and M.J. Luton, J. Mater. Res., 5 (1990), p. 271.

    CAS  Google Scholar 

  90. J.D. Whittenberger, Solid State Processing, ed. A.H. Clauer and J.J. deBarbadillo (Warrendale, PA: TMS, 1990), p. 137.

    Google Scholar 

  91. D.F. Lahrman, R.D. Field, and R. Darolia, Scr. Metall. (1993).

    Google Scholar 

  92. C.G. McKamey et al., J. Mater. Res., 6 (1991), p. 1779.

    CAS  Google Scholar 

  93. J.H. DeVan, Oxidation of High Temperature Intermetallics, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 107.

    Google Scholar 

  94. C.T. Liu, V.K. Sikka, and C.G. McKamey, “Alloy Development of FeAl Aluminide Alloys for Structural Use in Corrosive Environments,” ORNL Report, Martin Marietta Energy Systems, unpublished research.

  95. I. Baker and D.J. Gaydosh, Mater. Sci. Eng., 96 (1987), p. 147.

    CAS  Google Scholar 

  96. M.G. Mendiratta, S.K. Ehlers, and D.K. Chatterjee, “Rapid Solidification Processing: Principles and Technologies” (Washington, D.C.: National Bureau of Standards, 1983), p. 420.

    Google Scholar 

  97. D.J. Gaydosh, S.L. Drapa, and M.V. Nathal, Metall. Trans. A, 20A (1989), p. 1701.

    CAS  Google Scholar 

  98. C.G. McKamey, J.A. Horton, and C.T. Liu, in Ref. 2, p. 321.

    Google Scholar 

  99. C.T. Liu, E.H. Lee, and C.G. McKamey, Scr. Metall., 23 (1989), p. 875.

    CAS  Google Scholar 

  100. C.T. Liu, C.G. McKamey, and E.H. Lee, Scr. Metall., 24 (1990), p. 385.

    CAS  Google Scholar 

  101. O. Izumi and T. Takasugi, J. Mater. Res., 3 (1988), p. 426.

    CAS  Google Scholar 

  102. N. Masahashi, T. Takasugi, and O. Izumi, Acta Metall., 36 (1988), p. 1823.

    CAS  Google Scholar 

  103. T. Takasugi and O. Izumi, Scr. Metall., 19 (1985), p. 903.

    CAS  Google Scholar 

  104. A.K. Kuruvilla, S. Ashok, and N.S. Stoloff, Proceedings of the Third International Congress on Hydrogen in Metals, vol. 2 (1982), p. 629.

    CAS  Google Scholar 

  105. A.K. Kuruvilla and N.S. Stoloff, Scr. Metall., 19 (1985), p. 83.

    CAS  Google Scholar 

  106. G.M. Camus, N.S. Stoloff, and D.J. Duquette, Acta Metall., 37 (1989), p. 1497.

    CAS  Google Scholar 

  107. C.T. Liu and M. Takeyama, Scr. Metall., 24 (1990), p. 1583.

    CAS  Google Scholar 

  108. C.T. Liu et al., ISIJ Int. (October 1991).

    Google Scholar 

  109. C.T. Liu and E.P. George, Scr. Metall., 24 (1990), p. 1285.

    CAS  Google Scholar 

  110. C.T. Liu and E.P. George, in Ref. 4, p. 527.

    Google Scholar 

  111. D.J. Gaydosh and M. V. Nathal, Scr. Metall., 24 (1990), p. 1281.

    CAS  Google Scholar 

  112. R.J. Lynch, L.A. Heldt, and W.W. Milligan, Scr. Metall., 25 (1991), p. 2147.

    Google Scholar 

  113. M. Shea, A. Castagna, and N.S. Stoloff, in High Temperature Ordered Intermetallic Allays IV (Pittsburgh, PA: MRS, 1991), p. 607.

    Google Scholar 

  114. A. Castagna and N.S. Stoloff, Scr. Metall., 26 (1992), p. 673.

    CAS  Google Scholar 

  115. A. Castagna and N.S. Stoloff, Proc. Properties and Applications of Metallic and Ceramic Materials, ed. M.H. Lorette et al. (Birmingham, U.K: NCE Publ., 1992), pp. 689–694.

    Google Scholar 

  116. C.T. Liu, in Ref. 8, p. 321.

    Google Scholar 

  117. G. Sainfort et al., Mem. Étud. Sci. Rev. Metall., 60 (1963), p. 125.

    CAS  Google Scholar 

  118. P. Morgand, P. Mouturat, and G. Sainfort, Acta Metall., 16 (1968), p. 807.

    Google Scholar 

  119. S. Strothers and K. Vedula, Proceedings of the Powder Metallurgy Conference, vol. 43, (Princeton, NJ: MPIF, 1987), p. 597.

    Google Scholar 

  120. R.G. Bordeau, “Development of Iron Aluminides,” AFWAL-TR-87-4009 (East Hartford, CT: United Technologies Corporation, Pratt and Whitney, 1987).

    Google Scholar 

  121. G. Culberstson and C.S. Kortovich, “Development of Iron Aluminides,” AFWAL-TR4155 (Wright-Patterson Air Force Base, OH: Air Force Wright Aeronautical Laboratories, March 1986).

    Google Scholar 

  122. D.M. Dimiduk et al., Acta. Metall., 36 (1988), p. 2947.

    CAS  Google Scholar 

  123. R.S. Diem and D.E. Mikkola, in Ref. 2, p. 329.

    Google Scholar 

  124. P. Nagpal and I. Baker, Metall. Trans. A, 21A (1990), p. 2281.

    CAS  Google Scholar 

  125. Y.A. Chang et al., J. Intermetallics (1993).

    Google Scholar 

  126. S.A. David et al., Weld J. 68 (1989), pp. 372s–381s.

    Google Scholar 

  127. P.J. Maziasz et al., Scr. Metall., 27 (1992), p. 1835.

    CAS  Google Scholar 

  128. V.K. Sikka, J.T. Mavity, and K. Anderson, Mater. Sci. Eng., A-153 (1992), p. 712.

    Google Scholar 

  129. V.K. Sikka, Oak Ridge National Laboratory, private communication, 1992.

  130. R. Darolia, General Electric Aircraft Engines, private communication, 1992.

  131. R. Darolia et al., in Ref. 8, p. 679.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.T., Kumar, K.S. Ordered intermetallic alloys, part I: Nickel and iron aluminides. JOM 45, 38–44 (1993). https://doi.org/10.1007/BF03223218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223218

Keywords

Navigation