Skip to main content
Log in

Joining Oftitanium-Aluminium Seat Tracks for Aircraft Applications — System Technology and Joint Properties

  • Peer-Reviewed Section
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The current state of the art in light-weight construction for aircraft structures such as seat tracks, is the use of either aluminium or titanium materials. Whereas aluminium seat tracks are light-weight and less expensive, titanium seat tracks offer superior corrosion properties at higher cost. In order to combine the advantages of both materials, a hybrid Ti-AI structure is proposed. To produce such a structure, an appropriate thermal, laser-based brazing process was developed in a joint project of BIAS and their partners from industry. In this paper, the results from this research work will be reported and discussed. On the basis of the development of an appropriate system technology, the process development will be described, focusing on the main influencing parameters of the process on joint properties, which were characterized by metallurgical analyses, hardness testing and static tensile tests. It will be shown that laser beam joining is suitable to produce load-bearing aluminium-titanium-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreimeyer M. and Vollertsen F.: Processing titanium-aluminium hybrid joints for aircraft applications, in: Beyer F. et al. (Eds.): Proceedings of the 3rd International WLT-Conference on Lasers in Manufacturing LIM 2005, Munich, June 2005, pp. 73-78.

  2. Sepold G., Schubert E. and Zerner I.: Laser beam Joining of dissimilar materials, IIW Doc. IV-734-99, 1999.

  3. Chularis A.A., Kolpacheva O.V. and Tomashevskii V.M.: Electron structure and properties of intermetallic compounds in titanium-metal dissimilar joints, Welding International, 1995, vol. 9, no. 10, pp. 812–814.

    Article  Google Scholar 

  4. Yajiang L., Juan W., Peng L. and Jiangwei R.: Microstructure and XRD analysis near the interface of Ti/ Al diffusion bonding, International Journal for the Joining of Materials, 2005, vol. 17, no. 2, pp. 53–57.

    Google Scholar 

  5. Strong A.B. (Ed.): Composites in manufacturing, Dearborn, Society of Manufacturing Engineers, 1991.

    Google Scholar 

  6. Hansen M.: Constitution of binary alloys, McGraw-Hill, New York, 1958.

    Google Scholar 

  7. Lison R.: Verbindungsschweiβen unterschiedlicher Werkstoffe — exemplarisch vorgestellt, Welding of dissimilar materials — presented exemplary, Jahrbuch Schweiβtechnik 99, Deutscher Verlag für Schweiβtechnik, Düsseldorf, 1999 (in German).

    Google Scholar 

  8. Titan kann mit Aluminium verbunden werden (It is possible to join titanium with aluminium), Nippon Aluminium nimmt dünne Kupferlagen und ultraschallbehandeltes Lot. Blick durch die Wirtschaft. Beilage zur Frankfurter Allgemeinen Zeitung, 1993, vol. 36, 1 50 (in German).

  9. Suoda P., Dujak J. and Michalicka P.: Creation of heterogeneous weld joints of titanium- and aluminium-based materials by electron beam welding, Welding Science and Technology, Japan Slovak Welding Symposium, Tatranske Matliare, 1996.

  10. Fuji A., Ameyama K. and North T.H.: Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints, Journal of Materials Science, 1995, vol. 30, no. 20, pp. 5185–5191.

    Article  CAS  Google Scholar 

  11. Fuji A., Kimura M., North T.H., Ameyama K. and Aki M.: Mechanical properties of titanium-5083 aluminium alloy friction joints, Materials Science and Technology, 1997, vol. 13, no. 8, pp. 673–678.

    Article  CAS  Google Scholar 

  12. Ege E. and Inal O.T.: Stability of interfaces in explosively-welded aluminium titanium laminates, Journal of Materials Science Letters, 2000, vol. 19, no. 17, pp. 1533–1535.

    Article  CAS  Google Scholar 

  13. Kreimeyer M., Wagner F., Zerner I. and Sepold G.: Laserstrahlfügen von Aluminium mit Titan unter Verwendung eines optimierten Arbeitskopfs, Laser beam joining of aluminium and titanium by using an optimized working system, Proc. Löt 01, Aachen, DVS-Berichte 212, DVS-Verlag: Düsseldorf, 2001, pp. 317–321 (in German).

    Google Scholar 

  14. Seefeld T., Kreimeyer M., Wagner F. and Sepold G.: Laserstrahlfügen von Mischverbindungen, Laser beam joining of dissimilar materials, 4. Laser-Anwenderforum, Bremen, 2002, pp. 215-224 (in German).

  15. Kreimeyer M., Wagner F. and Vollertsen F.: Laser processing of aluminium-titanium-tailored blanks, Optics and Lasers in Engineering, 2005, vol. 43, no. 9, pp. 1021–1035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, F., Thomy, C. & Vollertsen, F. Joining Oftitanium-Aluminium Seat Tracks for Aircraft Applications — System Technology and Joint Properties. Weld World 56, 108–114 (2012). https://doi.org/10.1007/BF03321341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321341

IIW-Thesaurus keywords

Navigation