Skip to main content
Log in

Computing Final Polynomials and Final Syzygies Using Buchberger’s Gröbner Bases Method

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Final polynomials and final syzygies provide an explicit representation of polynomial identities promised by Hilbert’s Nullstellensatz. Such representations have been studied independently by Bokowski [2,3,4] and Whiteley [23,24] to derive invariant algebraic proofs for statements in geometry.

In the present paper we relate these methods to some recent developments in computational algebraic geometry. As the main new result we give an algorithm based on B. Buchberger’s Gröbner bases method for computing final polynomials and final syzygies over the complex numbers. Degree upper bound for final polynomials are derived from theorems of Lazard and Brownawell, and a topological criterion is proved for the existence of final syzygies. The second part of this paper is expository and discusses applications of our algorithm to real projective geometry, invariant theory and matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Becker, On the real spectrum of a ring and its applications to semialgebraic geometry, Bull. Amer. Math. Soc. 15 (1986) 19–60.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bokowski and B. Sturmfels, Polytopal and non-polytopal spheres. An algorithmic approach, Israel J. Math. 57 (1987) 257–271.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bokowski and K. Garms, Altshuler’s sphere M425 10 is not polytopal, European J. Combinatorics 8 (1987) 227–229.

    MathSciNet  MATH  Google Scholar 

  4. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics 1355, Springer, Heidelberg, 1989.

    Google Scholar 

  5. W.D. Brownawell, Bounds for the degree in the Nullstellensatz, Annals of Math. 126 (1987) 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystemes, Aequationes Mathematicae 4 (1970) 374–383.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Buchberger, Gröbner bases — an algorithmic method in polynomial ideal theory, Chapter 6 in N.K. Bose (ed.): “Multidimensional Systems Theory”, D. Reidel Publ., 1985.

  8. B. Buchberger, Applications of Gröbner bases in non-linear computational geometry, in J.R. Rice (ed.): Scientific Software, I.M.A. Volumes in Mathematics and its Applications, # 14, Springer, New York, 1988.

    Google Scholar 

  9. M.A. Dickrnann, Applications of model theory to real algebraic geometry, in “Methods in Mathematical Logic”, Lecture Notes in Mathematics 1130, Springer, Heidelberg, 1983, pp. 77–150.

    Google Scholar 

  10. J.A. Dieudonné and J.B. Carrell, Invariant Theory — Old and New, Academic Press, New York, 1971.

    MATH  Google Scholar 

  11. D.Y. Grigor’ev and N.N. Vorobjov, Solving systems of polynomial inequalities in sub exponential time, J. Symbolic Computation 5 (1988) 37–64.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Herrmann, Die Frage der endlich vielen Schritte in der Theory der Polynomideale, Math. Annalen 95 (1926) 736–788.

    Article  Google Scholar 

  13. C.R. Johnson, Some outstanding problems in the theory of matrices, Linear and Multilinear Algebra 12 (1982) 99–108.

    Article  MATH  Google Scholar 

  14. D. Kapur, Using Gröbner bases to reason about geometry, J. Symbolic Computation 2 (1986) 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  15. L.M. Kelly and S. Nwankpa, Affine embeddings of Sylvester-Gallai designs, J. Combinatorial Theory 14 (1973) 422–438.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Lazard, Algébre linéaire sur K[X1,…,X n] et élimination, Bull. Soc. math. France 105 (1977) 165–190.

    MathSciNet  MATH  Google Scholar 

  17. T. McMillan and N. White, Cayley Factorization, in P. Gianni (ed.): Proc. ACM Intern. Symp. Symbolic and Algebraic Computation, Rome, July 1988, to appear.

  18. D. Mumford, The Red Book on Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer, Heidelberg, 1988.

    Google Scholar 

  19. D. Shannon and M. Sweedler, Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms, and to determine birational equivalence, J. Symbolic Computaion 6 (1988) 267–274.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Sturmfels and N. White, Gröbner bases and invariant theory, Advances in Math., to appear.

  21. B.L. van der Waerden, Algebra I, Springer, Berlin, 1971.

    MATH  Google Scholar 

  22. H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946.

    MATH  Google Scholar 

  23. W. Whiteley, Logic and Invariant Theory, Ph.D. Dissertation, Massachussetts Institute of Technology, 1971.

  24. W. Whiteley, Logic and invariant computation for analytic geometry, in “Symbolic Computations in Geometry”, I.M.A. Preprint # 389, University of Minnesota, January 1988.

  25. W. Wu, Basic principles of mechanical theorem proving in geometries, J. of Automated Reasoning 2 (1986) 221–252.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturmfels, B. Computing Final Polynomials and Final Syzygies Using Buchberger’s Gröbner Bases Method. Results. Math. 15, 351–360 (1989). https://doi.org/10.1007/BF03322623

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322623

Keywords

Navigation