Skip to main content
Log in

Permanence and Positive Periodic Solutions for Kolmogorov Competing Species Systems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We prove the existence of periodic solutions in a compact attractor of (R+)n for the Kolmogorov system x′i = xifi(t, x1, , xn), i = l, …, n in the competitive case. Extension to differential delay equations are con- sidered too. Applications are given to Lotka-Volterra systems with periodic coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka equations, J. Math. Anal. Appl. 127 (1987), 377–389.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ahmad,On almost periodic solutions of the competing species problem, Proc. Amer. Math. Soc. 102 (1988), 855–861.

    Google Scholar 

  3. C. Alvarez and A.C. Lazer, An application of topological degree to the periodic competing species problem, J. Austral Math. Soc. Ser. B 28 (1986), 202–219.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bardi, An equation of growth of a single species with realistic dependence on crowding and seasonal factors, J. Math. Biol. 17 (1983), 33–43.

    Article  MathSciNet  MATH  Google Scholar 

  5. Th. Bartsch and J. Mawhin, The Leray — Schauder degree of S1-equivariant operators associated to autonomous neutral equations in spaces of periodic functions, J. Differential Equations 92 (1991), 90–99.

    Article  MathSciNet  MATH  Google Scholar 

  6. T.A. Burton and V. Hutson, Permanence for non-autonomous predator-prey systems, J. Differential and Integral Equations (to appear).

  7. G. Butler, H.I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986), 425–430.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Butler and P. Waltman, Persistence in dynamical systems, J. Differential Equations 63 (1986), 255–263.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Capietto, J. Mawhin and F. Zanolin, Continuatiion theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. (to appear).

  10. J.M. Cushing, Two species competition in a periodic enviroment, J. Math. Biol. 10 (1980), 385–400.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.M. Cushing, Periodic Kolmogorov systems, SIAM J. Math. Anal. 13 (1982), 811–827.

  12. M.L.C. Fernandes, Uniform repellers for processes with application to periodic differential systems, J. Differential Equations 86 (1990), 141–157.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.L.C. Fernandes and F. Zanolin, Existence and uniqueness results for periodic solutions of differential systems with application to the competing species problem, J. Math. Anal. Appl. 137 (1989), 335–348.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.L.C. Fernandes and F. Zanolin, Repelling conditions for boundary sets using Liapunov-like functions. II: Persistence and periodic solutions J. Differential Equations 86 (1990), 33–58.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Fonda, Uniformly persistent semi-dynamical systems, Proc. Amer. Math. Soc. 104 (1988), 111–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. T.C. Gard, Uniform persistence in multispecies population models, Math. Biosciences 85 (1987), 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Gopalsamy, Harmless delays in a periodic ecosystem, J. Austral. Math. Soc. Ser. B 25 (1984), 349–365.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1985), 66–72.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. Gossez, Periodic solutions for some first order ordinary differential equations with monotone nonlinearities, Bull. Math. Soc. Sci. Math. R.S. Roumanie vol. 24 (72) (1980), 25–33.

    MathSciNet  Google Scholar 

  20. J.K. Hale,“Theory of Functional Differential Equations”, Appl. Math. Sci. vol. 3 Springer — Verlag, New York1977.

  21. J.K. Hale and A.S. Somolinos, Competition for fluctuating nutrient. J. Math. Biol. 18 (1983), 225–280.

    Article  MathSciNet  Google Scholar 

  22. P. Hess and A.C. Lazer, On an abstract competition model and applications, Nonlinear Analysis, TMA 16 (1991), 917–940.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math. 91 (1981), 233–240.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Hofbauer and K. Sigmund, “The Theory of Evolution and Dynamical Systems”, London Math. Soc. Student Texts vol. 7 Cambridge Univ. Press, Cambridge 1988.

    Google Scholar 

  25. V. Hutson, A theorem on average Liapunov functions, Monatsh. Math. 98 (1984), 267–275.

    Article  MathSciNet  MATH  Google Scholar 

  26. H.W. Knobloch, An existence theorem for periodic solutions of nonlinear ordinary differential equations, Michigan Math. J. 9 (1962), 303–309.

    Article  MathSciNet  MATH  Google Scholar 

  27. M.A. Krasnosel’skii and P.P. Zabreiko, “Geometrical Methods of Nonlinear Analysis”, Springer-Verlag, Berlin/Heidelberg 1984

    Book  Google Scholar 

  28. V. Lakshmikantham and S. Leela, “Differential and Integral Inequalities: Theory and Applications.” (2 volumes), Meth. in Sci. and Engineering vol. 55 Academic Press New York/London 1969.

    Google Scholar 

  29. V. Lakshmikantham and S. Leela, Existence and monotone methods for periodic solutions of first order differential equations, J. Math. Anal Appl. 91 (1983), 237–243.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Mawhin, “Topological Degree Methods in Nonlinear Boundary Value Problems”, CBMS vol. 40 Amer. Math. Soc., Providence, R.I., 1979.

    Google Scholar 

  31. J. Mawhin, Qualitative behavior of the solutions of periodic first order scalar differential equations with strictly convex coercive nonlinearity, in: “NATO ARW on Dynamics of Infinite Dimensional Dynamical Systems, Lisbon 1986” (Chow and Hale, ed.) Springer-Verlag, Berlin 1987, pp. 151–160

    Google Scholar 

  32. J. Mawhin, Riccati type differential equations with periodic coefficients, in: “ICNO XI, Budapest 1987” (Farkas, Kertesz and Stepan, ed.) Janos Bolyai Math. Soc., Budapest 1987, pp. 157–

    Google Scholar 

  33. P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol. 11 (1981), 319–335.

    Article  MathSciNet  MATH  Google Scholar 

  34. V.A. Pliss, “Nonlocal Problems in the Theory of Oscillations”, Academic Press, New York, 1966.

    Google Scholar 

  35. S. Rosenblat, Population models in a periodically fluctuating enviroment, J. Math. Biol. 9 (1980), 23–36.

    Article  MathSciNet  MATH  Google Scholar 

  36. H.L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations 64 (1986), 165–194.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Tineo and C. Alvarez, A different consideration about the globally asymptotically stable solution of the periodic n-competing species problem, J. Math. Anal. Appl. 159 (1991), 44–50.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Vidossich, Towards a theory for periodic solutions to first order differential equations, SISSA 59/83/M (1983), pp. 1–10.

    Google Scholar 

  39. F. Zanolin, Some remarks about persistence for differential systems and processes, in: Advanced Topics in the Theory of Dynamical Systems, Trento 1987 (Fusco, Iannelli and Salvadori, ed.) Academic Press, San Diego, 1989, pp.253–266

    Google Scholar 

  40. X.-Q. Zhao, The qualitative analysis of n-species Lotka-Volterra periodic competition systems, Chinese Science Bull. (Kexue Tongbao) vol. 34 n.12 (1989) (Chinese), also in Mathematical and Computer Modeling (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor H. W. Knobloch on the occasion of his 65th birhtday

Work performed under the auspices of GNAFA-CNR and supported by a grant 60% MURST-1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanolin, F. Permanence and Positive Periodic Solutions for Kolmogorov Competing Species Systems. Results. Math. 21, 224–250 (1992). https://doi.org/10.1007/BF03323081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323081

Keywords

Navigation