Skip to main content
Log in

Application of agricultural fibers in pollution removal from aqueous solution

  • Review Paper
  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment-friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage. Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as biosorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmal, M.; Hussain Khan, A.; Ahmad, S.; Ahmad, A., (1998a). Role of sawdust in the removal of copper(II) from industrial wastes, Wat. Res., 32(10), 3085–3091.

    Article  CAS  Google Scholar 

  • Ajmal, M.; Mohammad, A.; Yousuf, R.; Ahmad, A., (1998b). Adsorption behavior of cadmium, zink, nickel, and lead from aqueous solution by mangifera india seed shell, India J. Environ Hlth, 40(1), 15–26.

    CAS  Google Scholar 

  • Ajmal, M.; Rao, R. A.; Anwar, S.; Ahmad, J.; Alunad, R., (2003). Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater, Bioresour. Technol., 86(2), 147–149.

    Article  CAS  Google Scholar 

  • Akbal, F.; Nuronar, A., (2003). Photocatalytic degradation of phenol. Environ. Monit. Assess., 83(3), 295–302

    Article  CAS  Google Scholar 

  • Aksu, Z.; Yener, J., (2001). A comparative adsorption/ boisorption study of mono-chlorinated phenols onto various sorbent. Waste Manage., 21(8), 695–702.

    Article  CAS  Google Scholar 

  • Al-Asheh, S.; Banat, F.; Al-Omari, R.; Duvnjak, Z., (2000). Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere, 41(5), 659–665.

    Article  CAS  Google Scholar 

  • Allen, S. J.; Brown, P. A., (1995). Isotherm analyses for single component and multicomponent metal sorption onto lignite, J. Chem. Technol. Biotechnol., 62, 7–24.

    Google Scholar 

  • Alnaizy, R.; Akgerman, A., (2000). Advanced oxidation of phenolic compounds. Adv. Environ. Res., 4(3), 233–244

    Article  Google Scholar 

  • Apak, R; Tutem, E.; Hugul, M.; Hizal, J., (1998). Heavy metal cation retention by unconventional sorbents (red muds and fly ashes), Wat. Res., 32(2), 430–440.

    Article  CAS  Google Scholar 

  • Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. A., (1999). A review of potentially low-cost sorbents for heavy metals, Wat. Res., 33(11), 2469–2479.

    Article  CAS  Google Scholar 

  • Balkose, D.; Baltacioglu, H., (1992). Adsorption of heavy metal cations from aqueous solution by wool fiber, J. Chem. Tech. Biotechnol., 54(4), 393–397.

    CAS  Google Scholar 

  • Banat, F. A.; Al-Bashir, B.; Al-Asheh, S.; Hayajneh, O., (2000). Adsorption of phenol by bentonit, Environ. Pollut., 107 (3), 391–398.

    Article  CAS  Google Scholar 

  • Baylor, S. E.; Olin, T. J.; Bricka, R M.; Adrian, D. D., (1999). Review of potentially low-cost sorbents for heavy metals, Wat. Res., 33, 2469–2479.

    Article  Google Scholar 

  • Bazrafshan, E.; Mahvi, A. H.; Nasseri, S.; Mesdaghinia, A. R., Vaezi, F., (2006). Removal of cadmium from industrial effluents by electrocoagulation process using iron electrodes, Iranian J. Environ. Health Sci. Eng., 3(4), 261–266.

    CAS  Google Scholar 

  • Beitran, F. J.; Rivas, F. J.; Gimeno, O., (2005). Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water, Chem. Technol. Biot, 80(9), 973–984.

    Article  Google Scholar 

  • Benguella B.; Benaissa, H., (2002). Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, Water Res., 36(10), 2463–2474.

    Article  CAS  Google Scholar 

  • Bolton, J. R.; Carter, S. R., (1994). Homogeneous photodegradation of pollutants in contaminated water: An introduction in aquatic and surface photochemistry. Lewis Publishers, Boca Raton, USA., 467–490.

    Google Scholar 

  • Caturla, F.; Martin-Martinez, J. M.; Molina-Sabio, M.; Rodrignez-Reinoso, F.; Torregrosa, R., (1998). Adsorption of substituted phenols on activated carbon, J. Coll. Interface Sci., 124(3), 528–534.

    Google Scholar 

  • Cheung, C. W.; Porter, J. F.; McKay, G, (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 35(2), 605–621.

    Article  CAS  Google Scholar 

  • Cossich, E. S.; Tavares, C. R G.; Ravagnani, T. M. K., (2002). Biosorption of chromium (III) by sargassum spp. Biomass, Electron. J. Biotechnol., 5(2), 133–140.

    Google Scholar 

  • Dadhich, A. S.; Beebi, S. K.; Kavitha, G V., (2004). Adsorption of Ni (II) using agrowaste, rice husk, J. Environ. Sci. Eng., 46(3), 179–185.

    CAS  Google Scholar 

  • Dae, W. C.; Young, H. K., (2005). Chromium (VI) removal in a semi-continues process of hallow fiber membrane with organic extractants, Korean J. Chem. Eng., 22(6), 894–898.

    Article  Google Scholar 

  • Dakikiy, M.; Khami, A.; Manassara, A.; Mereb, M., (2002). Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Res., 6(4), 533–540.

    Article  Google Scholar 

  • Danati-Tilaki, R. A.; Mahvi, A. H.; Shariat, M.; Nasseri, S., (2004). Study of cadmium removal from environmental water by biofilm covered granular activated carbon, Iranian J. Publ. Health, 33(4), 43–52.

    Google Scholar 

  • Davis, T. A.; Volesky, B.; Mucci, A., (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Wat. Res., 37(18), 4311–4330.

    Article  CAS  Google Scholar 

  • Dezuane, J., (1990). Handbook of drinking water quality standards and controls, Van Nostrand Reinhold, New York, 64–69.

    Google Scholar 

  • Dönniez, G. Ç., Aksu, Z.; öztürk, A.; Kutsal, T., (1999). A comparative study on heavy metal biosorption characteristic of some algae, Proc. Biochem., 34(5), 885–892.

    Google Scholar 

  • Edgehill, R.; Lu, G. Q., (1998). Adsorption characteristics of carbonized bark for phenol penta phlorophenol, J. Chem. Technol. Biotechnol., 71(1), 27–34.

    Article  CAS  Google Scholar 

  • Elliott, H.; Denneny, C. M., (1982). Soil adsorption of cadmium from solutions containing organic ligands, J. Environ. Qual., 11(2), 658–663.

    Article  CAS  Google Scholar 

  • Entezari, M. H.; Petrier, C.; Devidai, P., (2003). Sonochemical degradation of phenol in water: a comparison, a comparison of classical equipment with a new cylindrical reactor, Ultrason. Sonochem., 10(2) 103–108.

    Article  CAS  Google Scholar 

  • Esplugas, S.; Gimenez, J.; Contreras, S.; Pascual, E.; Rodriguez, M., (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res., 36(4), 1034–1042.

    Article  CAS  Google Scholar 

  • Ewan, K. B.; Pamphlet, R., (1996). Increased inorganic mercury in spinal motor neurous following chelating agents, Neur. Tox.

  • Figueira, M. W.; Volesky, B.; Ciminelli, V. S.; Roddick, F. A., (2000). Biosorption of metals in brown seaweed biomass, Wat. Res., 34(1), 196–204.

    Article  CAS  Google Scholar 

  • Gabaldon, C.; Marzal, P.; Seco, A., (1996). Cadmium and zinc adsorption on to activated carbon: influence of temperature, pH and mental/carbon ratio, J. Chem. Tech., Biotechnol., 66(7), 279–285, 1996

    Google Scholar 

  • Gholami, F.; Mahvi, A. H.; Omrani, Gh. A.; Nazmara, Sh.; Ghasri, A., (2006). Removal of chromium (VI) from aqueous solution by ulmus leaves, Iranian J. Environ. Health Sci. Eng., 3(2), 97–102.

    CAS  Google Scholar 

  • Halouli, K. A.; Drawish, N. M., (1995). Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolourising charcoal, Sep. Sci. Technol., 30(17), 3313–3324.

    Article  Google Scholar 

  • Han, W.; Zhu, W.; Zhang, P.; Zhang, Y; Li, L., (2004). Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185 rim UV light. Catal. Today, 90(2), 319–324.

    Article  CAS  Google Scholar 

  • Hayashi, H.; Nakashima, S., (1992). Synthesis of trioctahedral smectite from rice husk ash as agro-waste, Clay Science, 8 (4), 181–193.

    CAS  Google Scholar 

  • Kapoor, A.; Viraraghavan, T.; Cullimore, D. R., (1999). Removal of heavy metals using the fungus Aspergillus niger, Biores. Technol., 70(1), 95–104.

    Article  CAS  Google Scholar 

  • Khalfaour, B.; Meniai, A. H.; Borja, R., (1995). Removal of copper from industrial wastewater by raw charcoal obtained from Reeds, J. Chem. Tech. Biotechnol., 64(2), 153–156.

    Article  Google Scholar 

  • Khalid, N.; Ahmad, S.; Toheed, A., (2000). Potential of rice husks for antimony removal, Appl. Rad. Isotopes, 52(1), 30–38.

    Google Scholar 

  • Kiff, R. J.; Little, D. R., (1986). Biosorption of heavy metals by immobilized fungal biomass, in: immobilization of ions by biosorption, Ed., Hunt EH. 1st Ed., Ellis Horwood, Chichster, UK, 219.

  • Kumar, P.; Dara, S. S., (1982). Utilization of agricultural wastes for decontaminating industrial /domestic wastewaters from toxic metals, Agr. Wastes., 4(1), 213–223.

    Article  CAS  Google Scholar 

  • Kummar, S., Upadhyay, S. N.; Upadhyay, Y D., (1987). Removal of phenols by adsorption on fly ash, J. Chem. Tech. Biot., 37(4), 281–290.

    Google Scholar 

  • Lathasreea, S.; Nageswara, R. A.; SivaSankarb, B.; Sadasivamb, V; Rengarajb, K., (2004). Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Mol. Catal. A- Chem., 223(1–2), 101–105.

    Article  Google Scholar 

  • Lesko, T. M.; (2004). Chemical Effects of Acoustic Cavitation, Ph.D. thesis reported in California Institute of Technology, Pasadena, California, USA.

    Google Scholar 

  • Leyva-Ramos R.; Rangel-Mendez, J. R.; Men-doza-Barron, J.; Fuentes-Rubio, L.; Guer-rero-Coronado, R. M., (1997). Adsorption of cadmium (II) from aqueous solution on to activated carbon, Water Sci. Tech., 35(7), 205–211.

    Article  CAS  Google Scholar 

  • Lopez, F. A.; Perez, C.; Sainz, E.; Alonso, M., (1995). Adsorption of Pb (II) on blast furnace sludge, J. Chem. Tech. Biot., 62(2), 200–206.

    Article  CAS  Google Scholar 

  • Low, K. S.; Lee, C. K.; Liew, S. C., (2000). Sorption of cadmium and lead from aqueous solution by spent grain, Process Biochem., 36(1), 59–64.

    Article  CAS  Google Scholar 

  • Ma, W.; Tobin, J. M., (2003). Development of multimetal binding model and application to binary metal biosorption onto peat biomass, Water. Res., 37(16) 3967–3977.

    Article  CAS  Google Scholar 

  • Mahamuni, N. N.; Pandit, A. B., (2005). Effect of additives on ultrasonic degradation of phenol. Ultrason. Sonochem, 13(2), 165–174.

    Article  Google Scholar 

  • Mahvi, A. H.; Maleki, A.; Eslami, A., (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous system, Am. J. Appl. Sci., 1(4), 321–326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Mahvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahvi, A.H. Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Technol. 5, 275–285 (2008). https://doi.org/10.1007/BF03326022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326022

Keywords

Navigation