Skip to main content
Log in

Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In this work, the hydrophobic sorption of hemimicelles was proposed as an innovative method for removing bisphenol A from aqueous solution with esterified carboxyl cotton as sorbent and cetyl trimethyl ammonium bromide as cationic surfactant. In order to optimize the sorption process, the effect of sorbent dose, initial pH, surfactant dose, sorbate concentration, contact time and temperature was investigated in batch system. The maximum value of bisphenol A removal appeared in the pH range 4–10. The bisphenol A removal ratio came up to the maximum value beyond 12 time of surfactant/bisphenol A. The isothermal data of bisphenol A sorption conformed well to the Langmuir model and the maximum sorption capacity (Qm) of esterified carboxyl cotton for bisphenol A was 87.72 mg/g. The bisphenol A removal equilibrium was reached within about 4 h and the removal process could be described by the pseudo-second-order kinetic model. The thermodynamic study indicated that the bisphenol A sorption process was spontaneous and exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; Hefny, M.; El-Chagbaby G. A. F., (2007). Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Tech., 4 (1), 67–73 (7 pages).

    Article  CAS  Google Scholar 

  • Aoki, N.; Arai, R.; Hattori, K., (2004). Improved synthesis of chitosan-bearing β-cyclodextrin and its adsorption behavior towards bisphenol A and 4-nonylphenol. J. Incl. Phenom., Macrocycl. Chem., 50 (1-2), 115–120 (6 pages).

    CAS  Google Scholar 

  • Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.; Yamada, A., (2004). Study of removal effect of bisphenol A and β-estradiol by porous carbon. J. Health Sci., 50 (6), 588–593 (6 pages).

    Article  CAS  Google Scholar 

  • Cao, F.; Bai, P.; Li, H.; Ma, Y.; Deng, X.; Zhao, C., (2009). Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A. J. Hazard. Mater., 162 (2-3), 791–798 (8 pages).

    CAS  Google Scholar 

  • Chai, W.; Sakamaki, H.; Kitanaka, S.; Saito, M.; Horiuchi, C. A., (2003). Biodegradation of bisphenol A by cultured cells of Caragana chamlagu. Biosci. Biotech. Bioch., 67 (1), 218–220 (3 pages).

    Article  CAS  Google Scholar 

  • Dodds, E. C.; Lawson, W., (1936). Synthetic estrogenic agents without the phenanthrene nucleus. Nature, 137 (3476), 996.

    Article  CAS  Google Scholar 

  • Dong, B.; Wang, L.; Gao, N., (2008). The removal of bisphenol A by ultrafiltration. Desalination, 221 (1-3), 312–317 (6 pages).

    Article  CAS  Google Scholar 

  • Fan, J.; Fan, Y.; Pei, Y.; Wu, K.; Wang, J.; Fan, M., (2008). Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Sep. Purif. Tech., 61 (3), 324–331 (8 pages).

    Article  CAS  Google Scholar 

  • Fukuda, T.; Uchida, H.; Takashima, Y.; Uwajima, T.; Kawabata, T.; Suzuki, M., (2001). Degradation of bisphenol A by purified laccase from Trametes Villosa. Biochem. Biophys. Res. Commun., 284 (3), 704–706 (3 pages).

    Article  CAS  Google Scholar 

  • Gong, R.; Hu, Y.; Chen, J.; Chen, F.; Liu, Z., (2007). A cellulose-based carboxyl cotton chelator having citric acid as an anchored ligand: Preparation and application as solid phase extractant for copper determination by flame atomic absorption spectrometry. Microchim. Acta, 158 (3-4), 315–320 (6 pages).

    Article  CAS  Google Scholar 

  • Inoue, M.; Masuda, Y.; Okada, F.; Sakurai, A.; Takahashi, I.; Sakakibara, M., (2008). Degradation of bisphenol A using sonochemical reactions. Water Res., 42 (6-7), 1379–1386 (8 pages).

    Article  CAS  Google Scholar 

  • Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A., (2007). Comparison of Fenton and sono-Fenton bisphenol A degradation. J. Hazard. Mater., 142 (1-2), 559–563 (5 pages).

    Article  CAS  Google Scholar 

  • Irmak, S.; Erbatur, O.; Akgerman, A., (2005). Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J. Hazard. Mater., 126 (1–3), 54–62 (9 pages).

    Article  CAS  Google Scholar 

  • Kang, J. H.; Kondo, F., (2002). Bisphenol A degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol., 43 (3), 265–269 (5 pages).

    Article  CAS  Google Scholar 

  • Lee, S. M.; Koo, B. W.; Choi, J. W.; Choi, D. H.; An, B. S.; Jeung, E. B.; Choi, I. G., (2005). Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol. Pharm. Bull., 28 (2), 201–207 (7 pages).

    Article  CAS  Google Scholar 

  • Li, C.; Li, X. Z.; Graham, N.; Gao, N. Y., (2008).The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res., 42 (1–2), 109–120 (12 pages).

    Article  CAS  Google Scholar 

  • Li, H. M.; Nicell, J. A., (2008). Biocatalytic oxidation of bisphenol A in a reverse micelle system using horseradish peroxidase. Bioresource Tech., 99 (10), 4428–4437 (10 pages).

    Article  CAS  Google Scholar 

  • Lin, Y.; Shi, Y.; Jiang, M.; Jin, Y.; Peng, Y.; Lu, B.; Dai, K., (2008). Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environ. Pollut., 153 (2), 483–491 (9 pages).

    Article  CAS  Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6 (2), 183–190 (8 pages).

    CAS  Google Scholar 

  • Nakajima, N.; Oshima, Y.; Edmonds, J. S.; Morita, M., (2004). Glycosylation of bisphenol A by tobacco BY-2 cells. Phytochemistry, 65 (10), 1383–1387 (5 pages).

    Article  CAS  Google Scholar 

  • Nakanishi, A.; Tamai, M.; Kawasaki, N.; Nakamura, T.; Tanada, S., (2002). Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste. J. Colloid Interf. Sci., 252 (2), 393–396 (4 pages).

    Article  CAS  Google Scholar 

  • Namasivayam, C.; Sumithra, S., (2007). Adsorptive removal of phenols by Fe (III)/Cr (III) hydroxide, an industrial solid waste. Clean Tech. Environ. Policy, 9 (3), 215–223 (9 pages).

    Article  CAS  Google Scholar 

  • Noureddin, M. I.; Furumoto, T.; Ishida, Y.; Fukui, H., (2004). Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Biosci. Biotech. Bioch., 68 (6), 1398–1402 (5 pages).

    Article  CAS  Google Scholar 

  • Pan, B.; Lin, D.; Mashayekhi, H.; Xing, B., (2008). Adsorption and hysteresis of bisphenol A and 17α-ethinyl stradiol on carbon nanomaterials. Environ. Sci. Tech., 42 (15), 5480–5485 (6 pages).

    Article  CAS  Google Scholar 

  • Shareef, A.; Angove, M. J.; Wells, J. D.; Johnson, B. B., (2006). Sorption of bisphenol A, 17α-ethynylestradiol and estrone to mineral surfaces. J. Colloid Interf. Sci., 297 (1), 62–69 (8 pages).

    Article  CAS  Google Scholar 

  • Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O’Block, S. T.; Harris, L. R., (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36 (10), 2149–2173 (25 pages).

    Article  CAS  Google Scholar 

  • Tanaka, S.; Nakata, Y.; Kuramitz, H.; Kawasaki, M., (1999). Electrochemical decomposition of bisphenol A and nonylphenol using a Pt/Ti electrode. Chem. Lett., 28 (9), 943–944 (2 pages).

    Article  Google Scholar 

  • Tsai, W. T.; Hsu, H. C.; Su, T. Y.; Lin, K. Y.; Lin, C. M., (2006). Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. J. Colloid Interf. Sci., 299 (2), 513–519 (7 pages).

    Article  CAS  Google Scholar 

  • Tsue, H.; Takimoto, T.; Kikuchi, C.; Yanase, H.; Takahashi, H.; Amezawa, K.; Ishibashi, K.; Tanaka, S.; Tamura, R., (2005). Adsorptive removal of bisphenol A by calix[4]crown derivatives: Significant contribution of hydrogen bonding interaction to the control of adsorption behavior. Chem. Lett., 34 (7), 1030–1031 (2 pages).

    Article  CAS  Google Scholar 

  • Yoshida, M.; Ono, H.; Mori, Y.; Chuda, Y.; Onishi, K., (2001). Oxidation of bisphenol A and related compounds. Biosci. Biotech. Bioch., 65 (6), 1444–1446 (3 pages).

    Article  CAS  Google Scholar 

  • Zhao, C.; Wei, Q.; Yang, K.; Liu, X.; Nomizu, M.; Nishi, N., (2004). Preparation of porous polysulfone beads for selective removal of endocrine disruptors. Sep. Purif. Tech., 40 (3), 297–302 (6 pages).

    Article  CAS  Google Scholar 

  • Zhou, D.; Wu, F.; Deng, N.; Xiang, W., (2004). Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts. Water Res., 38 (19), 4107–4116 (10 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gong Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, R., Liang, J., Chen, J. et al. Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles. Int. J. Environ. Sci. Technol. 6, 539–544 (2009). https://doi.org/10.1007/BF03326093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326093

Keywords

Navigation