Skip to main content
Log in

Equilibrium sorption of crude oil by expanded perlite using different adsorption isotherms at 298.15 k

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

During the past decades, a significant increase occurred in accidental oil spill in the aquatic environments. In this regard, oil spill in Marine freshwater is still considered as a major environmental hazard. In this research, the experimental data on the sorption capacity of expanded perlite to crude oil were correlated with the equilibrium isotherm of Langmuir, Freudlich, Tempkin and the three parameter Redlich-Peterson isotherms. The results obtained from each specified isotherms were compared and accuracy of the models were favorably discussed. Accuracy of each model using the error function were evaluated. Moreover, the effect of type of objective function on the final results was investigated. To bring up the idea; the sum of square of the average squares of the errors, the sum of the squares of the errors, the hybrid fractional error function, Marquardt’s percent standard deviation and Chi-Square objective function were used and the accuracy was obtained using each objective function. The results showed that the Redlich-Peterson model can better represent the equilibrium isotherm data for the crude oil to be up taken on the expanded perlite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).

    Article  CAS  Google Scholar 

  • Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).

    CAS  Google Scholar 

  • Ahalya, N.; Kanamadi, R. D.; Ramachandra, T. V., (2005). Biosorption of Chromium (VI) from aqueous solution by the husk Bengal gram (Cicer Arientinum). Eelect. J. Biotech. 8(3), 258–264 (7 pages).

    Article  CAS  Google Scholar 

  • Ahalya, N.; Ramachandra, T. V.; Kanamadi, R. D., (2003). Biosorption of Heavy Metals. Res. J. Chem. Environ., 7(4), 71–79 (9 pages).

    CAS  Google Scholar 

  • Ankit, B.; Silke, S., (2008). Assessment of biosorption mechanism for Pb binding by citrus pectin. ep. Purif. Tech., 63(3), 577–581 (5 pages).

    Article  Google Scholar 

  • Aravindhan, R.; Bhaswant,SM.; Sreeram, K., J.; Raghava R., J.; Balachandran, U., N., (2009). Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Biores. Tech., 101(5), 1466–1470 (5 pages).

    Google Scholar 

  • Asku, Z., (1992). The biosorption of Cu (II) by C. vulgaris and Z. ramigera. Environ. Tech., 13(1), 579–586 (8 pages).

    Google Scholar 

  • Ceribasi, I. H.; Yetis, U., (2001). Biosorption of Ni (II) and Pb (II) by Phanerochaete chrysosporium from a bina ry metal system-Kinetics. Water SA., 27(1), 15–20 (6 pages).

    CAS  Google Scholar 

  • Chen, C.; Wang, J. L., (2007). Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed. Environ. Sci., 20(6), 478–482 (5 pages).

    CAS  Google Scholar 

  • Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).

    Google Scholar 

  • Devi Prasad, A. G; Abdulsalam, M. A., (2009). Biosorption of Fe (II) from aqueous solution using Tamarind Bark and potato peel waste: equilibrium and kinetic Studies. J. Appl. Sci. Environ. San., 4(3), 273–282 (10 pages).

    Google Scholar 

  • Friis; M. K., (1986). Biosorption of uranium and lead by Streptomyces longwoodenses. Biotech. Bioeng., 28(1), 21–28 (8 pages).

    Article  CAS  Google Scholar 

  • Fourest, E.; Roux, C. J., (1992). Heavy metal biosorption by fungal mycilial byproduct; mechanism and influence of pH. Appl. Microbiol. Biotech., 37(3), 399–403 (5 pages).

    Article  CAS  Google Scholar 

  • Gadd, G. M., (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Tech. Biotech., 84(1), 13–28 (16 pages).

    Article  CAS  Google Scholar 

  • Gadd, G. M.; De Rome, L., (1988). Biosorption of copper by fungal melanine. Appl. Microbiol. Biotech., 29(6), 610–617 (8 pages).

    Article  CAS  Google Scholar 

  • Galun, M.; Keller, P.; Malki, D.; Gallun, E.; Seigel, S.M.; Seigel, B. Z., (1983). Removal of uranium (VI) from solutions by fungal biomass and fungal wall related biopolymers. Science, 219(4582), 285–286 (3 pages).

    Article  CAS  Google Scholar 

  • Hanif, M. A.; Nadeem, R.; Bhatti, H. N.; Ahmad, N. R.; Ansari, T. M., (2007). Ni (II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater., 139(2), 345–355 (11 pages).

    Article  CAS  Google Scholar 

  • Hashim, M. A.; Chu, K. H., (2004). Biosorption of cadmium by brown, green and red seaweeds. Chem. Eng. J., 97(2–3), 249–255 (7 pages).

    Article  CAS  Google Scholar 

  • Horsefall, M. J.; Spiff, A. I., (2005). Effect of metal ion concentration on biosorption of Pb2+ and Cd2+ by Caladium bicolor (Wild Cocoyam). Afr. J. Biotech., 4(2), 191–196 (6 pages).

    Google Scholar 

  • King, P.; Anuradha, k.; Beena Lahari, S.; Prasanna Kumar, Y.; Prasad, V. S. R. K., (2007). Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetics studies. J. Hazard. Mater., 152(1), 324–329 (7 pages).

    Article  Google Scholar 

  • Kratochvil, D.; Velesky, B., (1998). Biosorption of Cu from ferruginous wastewater by algal biomass. Water Res., 32(9), 2760–2768 (9 pages).

    Article  CAS  Google Scholar 

  • Mamoona, A.; Nadeem, M. Z.; Sadaf, Y.; Raziya, N., (2008). The use of Neem biomass for the biosorption of zinc from aqueous solutions. J. Hazard. Mater., 157(2–3), 534–540 (7 pages).

    Google Scholar 

  • Mangollon, L.; Rodriquez, R.; Larrota, W.; Ramirez, N.; Torres. R., (1998). Biosorption of nickel using filamentous fungi. Appl. Biochem. Bioteh., 70–72(1), 593–601 (9 pages).

    Article  Google Scholar 

  • Masud, H. S.; Anantharaman, N., (2005). Studies on Cu (II) biosorption using Thiobacillus ferooxidans. J. Uni. Chem. Tech. Metall., 40(3), 227–234 (8 pages).

    Google Scholar 

  • Nuhoglu, Y.; Malkoc, E.; Gurses, A.; Canpolat, N., (2002). The removal of Cu (II) from aqueous solutions by Ulothrix zonata. Biores. Tech., 85(3), 331–333 (3 pages).

    Article  CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    Article  CAS  Google Scholar 

  • Priyantha, N.; Navaratne, A.; Ekanayake, C. B.; Ratnayake, A., (2008). Solvent extraction followed by ultraviolet detection for investigation of tetramethylthiuram disulfide at soil-water interface. Int. J. Environ. Sci. Tech., 5(4), 547–554 (8 pages).

    Article  CAS  Google Scholar 

  • Saeed, A.; Iqbal, M.; Akhtar, M.;W., (2005). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard. Mater., 117(1), 65–73 (9 pages).

    Article  CAS  Google Scholar 

  • Sakaguchi, T.; Nakajima, A., (1991). Accumulation of heavy metals such as uranium and thorium by microorganisms. Smith, R.W., Misra.M. (Eds.), Mineral Bioprocessing. The Minerals, Metals and Materials Society.

  • Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int. J. Environ. Sci. Tech., 4(1), 19–25 (7 pages).

    Article  CAS  Google Scholar 

  • Shah, B. A.; Shah, A. V.; Singh R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).

    Article  CAS  Google Scholar 

  • Soltanali, S.; Shams Hagani, Z., (2008). Modeling of air stripping from volatile organic compounds in biological treatment processes. Int. J. Environ. Sci. Tech., 5(3), 353–360 (8 pages).

    Article  CAS  Google Scholar 

  • Tyagi, O. D.; Mehra, M., (1994). A Text Book of Environmental Chemistry 1st. Ed. Anmol publication, 289–290 (17 pages).

  • Tsezos, M.; Volesky, B., (1982). The mechanism of uranium biosorption by Rhizopus arrhizus. Biotech. Bioeng., 24(2), 385–401 (17 pages).

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K.; Padmesh, T. V. N.; Palanivelu, K.; Velan, M., (2006). Biosorption of nickel (II) ions onto Sargassm wightii: Application of two-parameter and three-parameter isotherms models. J. Hazard. Mater., B133(1–3), 304–308 (5 pages).

    Article  Google Scholar 

  • Volesky, B., (2003). Sorption and biosorption, BV. Sorbex, Inc. Montreal, Canada. Section 6.1, 103–116.

    Google Scholar 

  • Yan, G.; Viraraghavan, T., (2000). Effect of pretreatment on the bioadsorption of heavy-metal on Mucor rouxii. Water SA., 26(1), 119–123 (5 pages).

    CAS  Google Scholar 

  • Yong K.; Lee, J. U.; Kim, K. W., (2008). Biosorption of Pb (II) from synthetic waste water onto Pseudomonas aeruginosa. Int. J. Environ. Pollut., 34(1–4) 195–202 (8 pages).

    Google Scholar 

  • Zhang, Y.; Banks, C., (2005). The interaction between Cu, Pb, Zn and Ni in their biosorption onto polyurethane-immobilised Sphagnum moss. J. Chem. Tech. Biotech. 80(11), 1297–1305 (9 pages).

    Article  CAS  Google Scholar 

  • Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alihosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alihosseini, A., Taghikhani, V., Safekordi, A.A. et al. Equilibrium sorption of crude oil by expanded perlite using different adsorption isotherms at 298.15 k. Int. J. Environ. Sci. Technol. 7, 591–598 (2010). https://doi.org/10.1007/BF03326168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326168

Keywords

Navigation