Skip to main content
Log in

Microbial community changes in contaminated soils in response to phenanthrene amendment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Leachate and reclaimed wastewater have become the important sources of polycyclic aromatic hydrocarbons in soils. However, the information on bioremediation of leachate and reclaimed wastewater-contaminated soils is still lacking. Identification of changes in microbial structure or of enriched genera related to biodegradation could aid identification of particular organisms or consortia capable of degrading polycyclic aromatic hydrocarbons in these contaminated soils. In this study, terminal restriction fragment length polymorphism, coupled with 16S Ribosomal ribonucleic acid clone library analysis, was applied to investigate the composition of bacterial community in leachate-contaminated soil or grassland soil irrigated reclaimed wastewater and the response to phenanthrene amendment. Results showed that phenanthrene amendment had significant but different impacts on microbial community structure, dependent on soil source. Several greatly enriched terminal restriction fragments with phenanthrene biodegradation were identified. Moreover, genus rhizobacteria, possibly linked to phenanthrene biodegradation, was firstly reported in this study. This work might provide some new insights into bioremediation of polycyclic aromatic hydrocarbons-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulsalam, S.; Bugaje, I. M.; Adefila, S. S.; Ibrahim S., (2011). Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int. J. Environ. Sci. Tech., 8(1), 187–194 (8 pages).

    CAS  Google Scholar 

  • Andreoni, V.; Cavalca, L.; Rao, M. A.; Nocerino, G.; Bernasconi, S.; Dell’Amico, E.; Colombo, M.; Gianfreda, L., (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401–412 (12 pages).

    Article  CAS  Google Scholar 

  • Arulazhagan, P.; Vasudevan, N.; Yeom, I. T., (2010). Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Tech., 7(4), 639–652 (14 pages).

    CAS  Google Scholar 

  • Cébron, A.; Beguiristain, T.; Faure, P.; Norini, M. P.; Masfaraud, J. F.; Leyval, C., (2009). Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl. Environ. Microbiol., 75(19), 6322–6330 (9 pages).

    Article  Google Scholar 

  • Chang, Y. T.; Lee, J. F.; Chao, H. P., (2007). Variability of communities and physiological characteristics between free-living bacteria and attached bacteria during the PAH biodegradation in a soil/water system. Eur. J. Soil Biol., 45(3), 283–296 (14 pages).

    Article  Google Scholar 

  • Chen, Y.; Wang, C. X.; Wang, Z. J., (2005). Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environ. Int., 31(6), 778–783 (6 pages).

    Article  CAS  Google Scholar 

  • Clarke, K. R.; Warwick, R. M., (2001). Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth Marine Laboratory, Plymouth, UK, 172 pp.

    Google Scholar 

  • Clement, B. G.; Kehl, L. E.; DeBord, K. L.; Kitts, C. L., (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Methods, 31(3), 135–142 (8 pages).

    Article  CAS  Google Scholar 

  • Cunliffe, M.; Kertesz, M. A., (2006). Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ. Pollut., 144(1), 228–237 (10 pages).

    Article  CAS  Google Scholar 

  • Cupples, A. M.; Sims, G. K., (2007). Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biol. Biochem., 39(1), 232–238 (7 pages).

    Article  CAS  Google Scholar 

  • Dunbar, J.; Ticknor, L. O.; Kuske, C. R., (2000). Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66(7), 2943–2950 (18 pages).

    Article  CAS  Google Scholar 

  • Dunbar, J. M.; Ticknor, L. O.; Kuske, C. R., (2001). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol., 67(1), 190–197 (8 pages).

    Article  CAS  Google Scholar 

  • Duran, A. C.; Gonzailez, A., (2009). Determination of lead, naphthalene, phenanthrene, anthracene and pyrene in street dust. Int. J. Environ. Sci. Tech., 6(4), 663–670 (8 pages).

    CAS  Google Scholar 

  • Falk, M. W.; Song, K. G.; Matiasek, M. G.; Wuertz, S., (2009). Microbial community dynamics in replicate membrane bioreactors-natural reproducible fluctuations. Water. Res., 43(3), 842–852 (11 pages).

    Article  CAS  Google Scholar 

  • Gennaro, P. D.; Morenoa, B.; Annonib, E.; García-Rodríguez, S.; Bestetti, G.; Beniteza, E., (2009). Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils. J. Hazard. Mater., 172(2–3), 1464–1469 (6 pages).

    Article  Google Scholar 

  • Grant, R. J.; Muckian, L. M.; Clipson, N. J. W.; Doyle, E. M., (2007). Microbial community changes during the bioremediation of creosote-contaminated soil. Lett. Appl. Microbiol., 44(3), 293–300 (8 pages).

    Article  CAS  Google Scholar 

  • Hackl, E.; Zechmeister-Boltenstern, S.; Bodrossy, L.; Sessitsch, A., (2004). Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol., 70(9), 5057–5065 (9 pages).

    Article  CAS  Google Scholar 

  • Han, X. J.; Li, L. Q.; Pan, G. X.; Hu, Z. L., (2009). Pollution characteristics of polycyclic aromatic hydrocarbons in soils from farmland around the domestic refuse dump. Eco. Environ. Sci., 18(4), 1251–1255 (5 pages).

    Google Scholar 

  • Haritash, A. K.; Kaushik, C. P., (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A Rev. J. Hazard. Mater., 169(1–3), 1–15 (15 pages).

    Article  CAS  Google Scholar 

  • He, J. J., (2008). Study on PAHs degraders and microbial diversity analysis in petroleum-contaminated soil. M.Sc. thesis, Xinjiang Agricultural University.

    Google Scholar 

  • He, J. T.; Jin, A. F.; Chen, S. N.; Wei, Y. X., (2010). Distribution characteristics of soil PAHs in reclaimed water irrigation area in the southeastern suburb of Beijing. J. Agro-Environ. Sci., 29(4), 666–673 (8 pages).

    CAS  Google Scholar 

  • Huang, Y.; Zhang, S. Y.; Lv, M. J.; Xie, S. G., (2010). Biosorption characteristics of ectomycorrhizal fungal mycelium to anthracene. Biomed. Environ. Sci., 23(5), 167–172 (6 pages).

    Google Scholar 

  • Langworthy, D. E.; Stapleton, R. D.; Sayler, G. S.; Findlay, R. H., (1998). Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl. Environ. Microbiol., 64(9), 3422–3428 (7 pages).

    CAS  Google Scholar 

  • LeBlanc, L. A.; Gulnick, J. D.; Brownawell, B. J.; Taylor, G. T., (2006). The influence of sediment resuspension on the degradation of phenanthrene in flow-through microcosms. Mar. Environ. Res., 61(2), 202–223 (22 pages).

    Article  CAS  Google Scholar 

  • Liu, W. T.; Marsh, T. L.; Cheng, H.; Forney, L. J., (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63(11), 4516–4522 (7 pages).

    CAS  Google Scholar 

  • Luo, C.; Xie, S. G.; Sun, W.; Li, X.; Cupples, A. M., (2009). Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol., 75(13), 4644–4647 (4 pages).

    Article  CAS  Google Scholar 

  • MacNaughton, S. J.; Stephen, J. R.; Venosa, A. D.; Davis, G. A.; Chang, Y. J.; White, D. C., (1999). Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol., 65(8), 3566–3574 (9 pages).

    CAS  Google Scholar 

  • Marsh, T. L., (1999). Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol., 2(3), 323–327 (5 pages).

    Article  CAS  Google Scholar 

  • Mills, D. K.; Fitzgeralda, K.; Litchfielda, C. D.; Gillevetb, P. M., (2003). A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J. Microbiol. Methods., 54(1), 57–74 (18 pages).

    Article  CAS  Google Scholar 

  • Mu, D. Y.; Scow, K. M., (1994). Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl. Environ. Microbiol., 60(7), 2661–2665 (5 pages).

    CAS  Google Scholar 

  • Muckian, L. M.; Grant, R. J.; Clipson, N. J. W.; Doyle, E. M.,(2009). Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int. Biodeterior. Biodegrad., 63(1), 52–56 (5 pages).

    Article  CAS  Google Scholar 

  • Nautiyal, C. S.; Govindarajan, R.; Lavania, M.; Pushpangadan, P., (2008). Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria NRRL B-30488. J. Agric. Food. Chem., 56(12), 4474–4481 (8 pages).

    Article  CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2010). Effect of co-existing plant specie on soil microbial activity under heavy metal stress. Int. J. Environ. Sci. Tech., 7(4), 697–704 (8 pages).

    CAS  Google Scholar 

  • Piskonen, R.; NyyssÖnen, M.; Rajamäki, T.; Itävaara, M., (2005). Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation, 16(2), 127–134 (8 pages).

    Article  CAS  Google Scholar 

  • Santos, E. C.; Jacques, R. J. S.; Bento, F. M.; do Carmo, R.; Peralba, M.; Selbach, P. A.; Flá, S.; Camargo, F. A. O., (2008). Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresour. Tech., 99(7), 2644–2649 (6 pages).

    Article  CAS  Google Scholar 

  • Schütte, U. M. E.; Abdo, Z.; Bent, S. J.; Shyu, C.; Williams, C. J.; Pierson, J. D.; Forney, L. J., (2008). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl. Microbiol. Biotech., 80(3), 365–380 (16 pages).

    Article  Google Scholar 

  • Stralis-Pavese, N.; Bodrossy, L.; Reichenauer, T. G.; Weilharter, A.; Sessitsch, A., (2006). 16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl. Soil. Ecol., 31(3), 251–266 (16 pages).

    Article  Google Scholar 

  • Straube, W. L.; Nestler, C. C.; Hansen, L. D.; Ringleberg, D.; Pritchard, P. H.; Jones-Meehan, J., (2003). Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta. Biotech., 23(2–3), 179–196 (18 pages).

    Article  CAS  Google Scholar 

  • Subramanyam, B. M. E.; Das, A., (2009). Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. Int. J. Environ. Sci. Tech., 6(4), 633–640 (8 pages).

    CAS  Google Scholar 

  • Tao, S.; Cui, Y. H.; Xu, F. L.; Li, B. G.; Cao, J.; Liu, W. X.; Schmitt, G.; Wang, X. J.; Shen, W. R.; Qing, B. P.; Sun, R., (2004). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci. Total. Environ., 320(1), 11–24 (14 pages).

    Article  CAS  Google Scholar 

  • Törneman, N.; Yang, X. H.; Bååth, E.; Bengtsson, G., (2008). Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Environ. Toxicol. Chem., 27(5), 1039–1046 (8 pages).

    Article  Google Scholar 

  • Vinãs, M.; Sabaté, J.; Espuny, M. J.; Solanas, A. M., (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol., 71(11), 7008–7018 (11 pages).

    Article  Google Scholar 

  • Wang, Q.; Garrity, G. M.; Tiedje, J. M.; Cole, J. R., (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73(16), 5261–5267 (7 pages).

    Article  CAS  Google Scholar 

  • Whyte, L. G.; Bourbonniere, L.; Bellerose, C.; Greer, C. W., (1999). Bioremediation assessment of hydrocarbon-contaminated soils from the high arctic. Bioremed. J., 3(1), 69–79 (11 pages).

    Article  CAS  Google Scholar 

  • Wiinsche, L.; Briiggemann, L.; Babel, W., (1995). Determination of substrate utilization patterns of soil microbial communities: An approach to assess population changes after hydrocarbon pollution. FEMS Microbiol. Ecol., 17(4), 295–306 (12 pages).

    Google Scholar 

  • Wong, J. W. C.; Lai, K. M.; Wan, C. K.; Ma, K. K.; Fang, M., (2002). Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut., 139(1–4), 1–13 (13 pages).

    Article  CAS  Google Scholar 

  • Xie, S. G.; Sun, W. M.; Luo, C. L.; Cupples, A. M., (2010). Stable isotope probing identifies novel m-xylene degraders in soil microcosms from contaminated and uncontaminated sites. Water, Air, Soil Pollut., 212(1–4), 113–122 (10 pages).

    Article  CAS  Google Scholar 

  • Yousefi Kebria, D.; Khodadadi, A.; Ganjidoust, H.; Badkoubi, A.; Amoozegar, M. A., (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Tech., 6(3), 435–442 (8 pages).

    Google Scholar 

  • Yuan, S. Y.; Wei, S. H.; Chang, B. V., (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41(9), 1463–1468 (6 pages).

    Article  CAS  Google Scholar 

  • Zhang, H.; Dang, Z.; Zheng, L. C.; Yi, X. Y., (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.) Int. J. Environ. Sci. Tech., 6(2), 249–258 (10 pages).

    Google Scholar 

  • Zhang, W.; Wang, H.; Zhang, R.; Yu, X. Z.; Qian, P. Y.; Wong, M. H., (2010). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology, 19(1), 96–104 (9 pages).

    Article  CAS  Google Scholar 

  • Zhang, Y. L., (2008). Ecologieal effects of the utilization of sewage and sewage sludge on microbes in soil. Ph.D. thesis, Shandong University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Xie Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.Y., Wang, Q.F. & Xie, S.G. Microbial community changes in contaminated soils in response to phenanthrene amendment. Int. J. Environ. Sci. Technol. 8, 321–330 (2011). https://doi.org/10.1007/BF03326219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326219

Keywords

Navigation