Skip to main content
Log in

Liquefaction susceptibility mapping using geotechnical laboratory tests

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The soil liquefaction potential has been evaluated for the Ariana Region because of its important socio-economic interest and its location. Liquefaction susceptibility mapping is carried out using a decisional flow chart for evaluation of earthquake-induced effects, based on available data such as paleoliquefaction, geological, groundwater depth, seismotectonic, sedimentary features and geotechnical parameters in particular laboratory testing like grain size analyses and state parameters. Survey results showed that some of these localities are considered as possible sites to soil liquefaction. Indeed, Quaternary alluvium deposits, paleo beaches and recent deposits that edge the lake and the sebka constitute the most susceptible locations to liquefaction. In the east and the west sides of the studied zone, Quaternary deposits are less susceptible to the liquefaction due to the groundwater level deepening and to the relatively old age of the deposits. Elsewhere sedimentary formations are classified as non-liquefiable as they are heavily compacted and old.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, T. B.; Roy, B.; Van, A.; Jason, H. B., (2001). Liquefactionsusceptibility mapping in thecity of memphis and shelby country. Tennessee. Eng. Geo., 62(1), 207–222 (16 pages).

    Google Scholar 

  • AFPS, (1993). Guide méthodologique pour la réalisation d’étude de microzonage sismique. Saint-Rémy-lès-Chevreuse.

  • Ansal, A. M.; Lav, A. M.; I’yisan, R.; Vae Erken, A., (1994). Effects ofgeotechnical factors in March 13,1992 Erzincan Earthquake. 13th. international conference on soil mechanics and foundation engineering, New Delhi, 49–54 (6 pages).

  • BRGM-ARN/RGC, (2002). Aide mémoire géotechnique pour les études de risque dans le domaine de la liquéfaction des sols. Aide mémoire géotechnique pour les études de risque dans le domaine de la liquéfaction des sols, 43.

  • Dlala, M.; Rebai, S.; Philip, H., (1994). Approche sismotectonique des caractères de la sismicité en Tunisie. C. R. Acad. Sci. Paris. t. 319(5), 573–579 (7 pages).

    Google Scholar 

  • Dlala, M., (1995). Seismotectonic study in northern Tunisia. Tectonophysics, 209(1–4), 171–174 (5 pages).

    Google Scholar 

  • Dlala, M.; Kacem, J., (2007). Carte sismotectonique de la région du grand Tunis au 1/50 000, Ed de l’Office de Topographie et de Cartographie, Tunis. INM publisher.

    Google Scholar 

  • Finn, W. D. L., (2001). State of the art for the evaluation of seismic liquefaction potential. Comput. Geotech. J., 29(5), 329–341 (13 pages).

    Article  Google Scholar 

  • Hamada, M.; Aydan, Ö., (1992). A report of the site investigation of March 13, 1992 Earthquake of Erzincan, Turkey. ADEP, Association for Development of Earthquake Prediction, 86.

  • Ishihara, K.; Yasuda, S., (1991). Microzonation for Liquefaction Potential during Earthquakes in Japan. Proceeding of the 4th. International Conference on Seismic Zonation, 1, 703–724 (22 pages).

    Google Scholar 

  • Kacem, J., (2004). Etude sismotectonique et évaluation de l’aléa sismique régional du Nord-Est de Tunis: Apport de la sismique réflexion dans l’identification des sources seismogéniques. Thčse de doctorat, Université Tunis, faculté Science Tunis, 200.

  • Kramer, S. L., (1996). Geotechnical earthquake engineering. New Jersey. Prentice Hall, 348–355.

    Google Scholar 

  • Ozdemir, A.; Ince, I, (2004). Geology seismotectonics and soil liquefaction susceptibility of Ilgin (west-central part of Turkey) residential area. Eng. Geol., 77(1–2), 169–188 (20 pages).

    Google Scholar 

  • Papathanassiou, G.; Pavlides, S.; Ganas, A., (2005). The 2003 earthquake: Field observations and priminary microzonation map based on liquefaction potential index for the town of Lefkada. Eng. Geo.,82, 12–31.

    Article  Google Scholar 

  • Pecker, A., (1984). Dynamique des sols, Presses de l’Ecole Nationale des Ponts et des Chaussées, ISBN: 2-85978-330-X. 259.

  • Philip, H., (1987). Plio-Quaternary evolution of the stress field in Mediterranean zones of subduction and collision. Ann. Geophysic., 5(2), 301–320 (20 pages).

    Google Scholar 

  • Pimienta, J., (1959). Le cycle pliocène-actuel dans les bassins paraliques de Tunis, Thèse. Fac. Sci. Paris et Mém. Soc. Géol. Fr., Nelle série XXXVIII, 85, 197.

    Google Scholar 

  • Rathje, E. M.; Karatas, I.; Stephen, G. W.; Bachhuber, J., (2004). Coastal failures during the 1999 Kocaeli earthquake of Turkey. Soil dyn. Earthquake Eng., 24(9–10), 699–712 (14 pages).

    Article  Google Scholar 

  • Rix, G. J; Romero-Hudock, S. (2006). Liquefaction potential mapping in memphis and Shelby County, Tennessee. Engineering Geology, 27.

  • Sonmez, B.; Ulusay, R., (2008). Liquefaction potential at Izmit Bay: comparison of predicted and observed soil liquefaction during the Kocaeli earthquake. Bull. Eng. Geol. Environ. 67(1), 1–9 (10 pages).

    Article  Google Scholar 

  • Soysal, H.; Sipahioglu, S.; Kolçak, D.; van Altýnok, Y., (1981). Trükiye ve Çevresinin tarihsel deprem katalogu. Tübitak Yayinlari, No: 563 TBAG Seri No: 34 86 Sayfa Tübitak Fotog (raf Klis,e Labaratuar ve Ofset Tesisleri Ankara TBAG, 124.

  • Stephen, F. O.; Scott, M. O.; Russell, A. G., (2004). Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking. Eng. Geo., 76(3–4), 209–234 (26 pages).

    Google Scholar 

  • Ulusay, R.; Aydan, Ö.; Kumsar, H.; Sönmez, H., (2000). Engineering geological characteristic of the 1998 Adana-Ceyhan earthquake with particular emphasis on liquefaction phenomena and the role of soil behaviour. Bull. Eng. Geo. Environ., 59(2), 99–118 (20 pages).

    Article  Google Scholar 

  • Youd, T. L.; Perkins, D. M., (1978). Mapping liquefaction-induced ground failure potential. J. Geo. Eng. Div., 104(4), 433–446 (14 pages).

    Google Scholar 

  • Youd, T. L., (1991). Mapping of earthquake-induced liquefaction for seismic zonation. Procceding of the 4th. international conference on seismic zonation. 1, 111–147 (37 pages).

  • Yuan, H.; Yang, S. H.; Andrus, R. D.; Juang, H., (2003). Liquefaction induced ground failure: A study of the Chi-Chi earthquake cases. Eng. Geol., 17(1–2), 141–155 (15 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El May, M., Kacem, J. & Dlala, M. Liquefaction susceptibility mapping using geotechnical laboratory tests. Int. J. Environ. Sci. Technol. 6, 299–308 (2009). https://doi.org/10.1007/BF03327633

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327633

Keywords

Navigation