Skip to main content
Log in

Laser Welding: State of the Art Review

  • Physical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

Since its initial development, the laser has been hailed as a potentially useful welding tool for a variety of applications. The scope for technical and commercial laser welding applications has increased greatly since the development of multikilowatt CW CO2 lasers around 1970. The laser’s capability of generating a power density greater than 106 watts/cm2 is a primary factor in establishing its potential for welding. Numerous experiments have shown that the laser permits high-quality precision weld joints rivaled only by electron beam. This article will present the state of the art of laser welding by reviewing recent work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Brown, “High Power CO2-Electric Discharge Mixing,” Appl. Phys. Letters, 17,(9) (1970).

    Google Scholar 

  2. C. O. Brown, and J. W. Davis, “Electric Discharge Convection Lasers,” paper presented at the IEEE Int. Electronic Devices Meeting, Washington, D.C. (1976).

  3. C. K. N. Patel, Physics Rev., 136, A1187 (1964).

    Article  Google Scholar 

  4. I. J. Spalding, “Laser System Developments,” Physics Bull., United Kingdon, July 1971, p. 402.

  5. Y. Arata, and I. Miyamoto, Technocrat, 11,(5) (1978), p. 33.

    Google Scholar 

  6. J. E. Anderson, and J. E. Jackson, Welding J., 44, (1965), p. 1018.

    Google Scholar 

  7. W. W. Duley, CO 2 Lasers, Effects, and Application, Academic Press, New York (1976).

    Google Scholar 

  8. C. M. Banas, “Laser Welding to 100 kW,” United Technologies Research Center Report No. R76-912260-2 (under Navy Contract N00173-76-M-0107), February 1977.

  9. A. M. Meleka, ed., Electron Beam Welding Principles and Practice, published for the Welding Institute, McGraw-Hill, London, (1971) pp. 95–96.

    Google Scholar 

  10. D. T. Swifthook, and E. E. F. Gick, Welding J., (1973). pp. 492S-499S.

  11. P. G. Klemens, J. Appl. Physics, 47, (1976), pp. 2165–2174.

    Article  Google Scholar 

  12. J. G. Sickman, and R. Morijn, Phillips Res. Rep., 23 (1968), p. 376.

    Google Scholar 

  13. J. G. Sickman, and R. Morijn, Phillips Res. Rep., 23 (1968), p. 375.

    Google Scholar 

  14. Y. Arata, H. Maruo, I. Miyamoto, and Y. Inoue, “Dynamic Behavior of Laser Welding,” IIW DOC, IV/222/77 (1977).

  15. E. V. Locke, and R. A. Hella, IEEE J. Quantum Electronics, QE-10(2), (1974), pp. 179–185.

    Article  Google Scholar 

  16. E. L. Baardsen, D. J. Schmatz, and R. E. Bisaro, Welding J., 52, (1973), pp. 227–229.

    Google Scholar 

  17. J. E. Harry Industrial Application of Lasers, McGraw-Hill Book Co., Ltd., United Kingdon, (1974).

    Google Scholar 

  18. J. Mazumder, Ph.D. Thesis, London University (1978).

  19. A. F. Gibson, M. H Kimmit, and A. C. Walker, Appl. Phys. Letters, 17 (1970) pp. 75–77.

    Article  Google Scholar 

  20. A. F. Gibson and A. C. Walker, J. Phys. C. Solid State Physics, 4 (1971) pp. 2209–2219.

    Article  Google Scholar 

  21. J. Mazumder, “Laser Welding,” in Laser Materials Processing, edited by M. Bass, to be published by North Holland Pub. Co., The Netherlands.

  22. Y. Arata, and I. Miyamoto, Laser Focus (3) (1977).

  23. M. A. Bramson, Infrared Radiation: A Handbook for Application, Plenum Press, New York (1968).

    Book  Google Scholar 

  24. M. Jørgensen, Metal Construction, 12,(2), (1980), p. 88.

    Google Scholar 

  25. R. C. Crafer, The Weld Inst. Res. Bull, 17, (1976).

  26. E. V. Locke, E. Hoag, and R. Hella, Weld. J., 51, (1972), pp. 245S–249S.

    Google Scholar 

  27. E. V. Locke, E. Hoag, and R. Hella, IEEE J. of Quantum Electronics, QE8, (1972), p. 132.

    Article  Google Scholar 

  28. J. Mazumder, and W. M. Steen, Metal Construction, 12,(9) (1980), p. 423.

    Google Scholar 

  29. H. J. Adams, Metal Construction and Br. Welding J., 2,(1) (1970), pp. 1–8.

    Google Scholar 

  30. F D. Seaman, “The Role of Shielding Gas in High Power CO2(CW) Laser Welding,” SME Technical Paper No. MR77-982, Soc. of Mfg. Eng., 20501 Ford Road, Post Office Box 930, Dearborn, Michigan (1977).

    Google Scholar 

  31. R. M. Rein, et al., Patent 1448740, The United Kingdom Patent Office (1972).

  32. J. R. Shewell, “Design for Laser Beam Welding,” Welding Design and Fabrication, 50(6) (1977), pp. 106–110.

    Google Scholar 

  33. C. O. Brown, and C. M. Banas, “Deep Penetration Laser Welding,” AWS Annual Meeting, San Francisco, California, April 1971.

  34. J. F. Ready, Effect of High Power Laser Radiation, Academic Press, New York (1971).

    Google Scholar 

  35. K. G. Nichols, Proc, Inst. of Electronic Eng., 116, Part 12, December (1969), pp. 2093–2100.

    Article  Google Scholar 

  36. M. M. Schwartz, “Laser Welding and Cutting,” WRC Bulletin 167, November 1971.

  37. A. R. Pfluger, and P. M. Mass, Welding J., 44, (1965), p. 1018.

    Google Scholar 

  38. M. I. Cohen, F. J. Mainwaring, and T. G. Melone, Welding J., 48, (1969), p. 191.

    Google Scholar 

  39. J. E. Anderson, and J. E. Jackson, Proc., Electron Laser Beam Symp., edited by A. B. El-Kareh, Penn State University, (1965), p. 17.

  40. V. K. Lebedev, and V. T. Granista, Automat. Weld., 25, (1972), p. 63.

    Google Scholar 

  41. O. A. Velichco, U. P. Gasshchuk, and V. E. Moravskii, Auto. Weld., 25, Part 4, (1972), p. 75.

    Google Scholar 

  42. K. J. Miller, and J. D. Nunnikhoven, Welding J., 44, (1965) p. 480.

    Google Scholar 

  43. K. J. Miller, Weld. Eng., 51, (1966), p. 46.

    Google Scholar 

  44. A. O. Schmidt, I. Ham, and T. Hoski, Weld. J. Suppl. November 1965, p. 48.

  45. R. C. Crafer, Welding Institute Res. Bull. 17, (U.K.). April 1976.

  46. E. A. Metzbower and D. W. Moon, “Mechanical Properties, Fracture Toughness, and Microstructures of Laser Welds of High Strength Alloys,” in Proc., Conf. on Applications of Lasers in Materials Processing, edited by E. A. Metzbower, American Soc. of Metals, Ohio, (1979), pp. 83–100.

    Google Scholar 

  47. D. B. Snow, and E. M. Breinan, “Evaluation of Basic Welding Capabilities,” prepared by United Technologies Res. Center, East Hartford, Connecticut for ONR, Dept. of Navy, Report No. R78-91189-14, July 1978.

    Google Scholar 

  48. E. M. Breinan, C. M. Banas, and M. A. Greenfield, “Laser Welding — The Present State of the Art,” 11th Annual Meeting, Tel Aviv, DOC IV-181-75, July 6–12, 1975, pp. 1–53.

  49. M. M. Schwatz, Metal Joining Manual, McGraw-Hill Book Co., New York (1979).

    Google Scholar 

  50. J. Mazumder, “Laser Welding of Aluminum Alloys,” unpublished research carried out at the Center for Laser Studies, University of Southern California under Contract from Alcoa Laboratories Joining Div., Alcoa Center, Pennsylvania.

  51. R. A. Willgoss, J. H. P. C. Megaw, and J. N. Clark, “Assessing the Laser for Power Plant Welding,” Welding and Metal Fabrication, 47(2) (1979) pp. 117–126.

    Google Scholar 

  52. R. C. Crafer, “Advances in Welding Processes,” in Proc., 4th Int. Conf. Harrogate, Yorks, Paper No. 46, May 9–11, 1978, pp. 267–278.

  53. J. Mazumder, and W. M. Steen, “Laser Welding of Steels used in Can Making,” Welding J., 60,(6), (1968), pp. 19–25.

    Google Scholar 

  54. F. D. Seaman, and R. A. Hella, “Establishment of a Continuous Wave Laser Welding Process,” IR-809-3 (1 through 10), AFML Contract F336 15-73-C5004, October 1976.

  55. E. M. Breinan, and C. M. Banas, “Preliminary Evaluation of Laser Welding of X-80 Arctic Pipeline Steel,” WRC Bull, 201, December 1971.

  56. C. M. Banas, and G. T. Peters, “Study of the Feasibility of Laser Welding in Merchant Ship Construction,” Contract No. 2-36214, U.S. Dept. of Commerce, Final Report to Bethlehem Steel Corp., August 1974.

  57. C. M. Banas, “Electron Beam, Laser Beam, and Plasma Arc Welding Studies,” Contract No. NASA1-12565, NASA, March 1974.

  58. M. Yessik, and D. J. Schmatz, “Laser Processing in the Automotive Industry,” SME Paper MR74-962 (1974).

  59. C. M. Banas, “Laser Welding Developments,” in Proc., CEGB Int. Conf. on Welding Res. Related to Power Plants, edited by N. F. Eaton and I. M. Wyatt, Southampton, England, September 17–21, 1972, pp. 565–573.

  60. H. Nagler, “Feasibility, Applicability, and Cost Effectiveness of LBW of Navy Ships, Structural Components, and Assemblies,” Contract No. N00G00-76-C-1370, Vols. 1 and 2, December 22, 1976.

  61. W. M. Steen, and M. Eboo, “Arc Augmented Laser Welding,” Metal Construction, 11,(7) (1979), pp. 332–335.

    Google Scholar 

  62. A. Blake, and J. Mazumder, unpublished work, University of Ill. at U-C (1981).

  63. J. Mazumder and W. M. Steen, “Microstructure and Mechanical Properties of Laser Welded titanium — 6 A1-4V,” Met. Trans., 13A (1982), pp. 865–871.

    Article  Google Scholar 

  64. C. M. Banas, “Electron Beam, Laser Beam, and Plasma Arc Welding Studies,” NASA Contractor Report No. NASA CR-132386, March 1975.

  65. C. M. Banas, United Technologies Res. Center Report No. R75-412260-1, July 1975.

  66. F. E. Seaman, “Establishment of a CW CO2 Laser Welding Process,” USAF Tech. Report AFML-TR-76-158, September 1978.

  67. M. J. Adams, “CO2 Laser Welding of Aero-Engine Materials,” Rep. 3335/3/73, British Welding Institute, England (1973).

    Google Scholar 

  68. B. Hochied, R. Klima, C. Beauvais, and C. Roux, Memoires Schientifiques Rev. Metallurgie LXVII, No. 9 (1970) p. 583.

  69. M. A. Zaidi, Master of Science Thesis, London University, Imperial College (1978).

  70. J. Mazumder, and W. M. Steen, J. Applied Physics, 51(2) (1980) p. 94.

    Google Scholar 

  71. S. A. David, and C. T. Liu, “High Power Laser and Arc Welding of Thorium Doped Tridium Alloys,” Report No. ORNL/TM 7258, Oak Ridge, Tennessee, May 1980.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: This article appears in Lasers in Metallurgy, edited by Kali Mukherjee and J. Mazumder, The Metallurgical Society of AIME, Warrendale, Pennsylvania. Copyright 1982.

Dr. Mazumder received his bachelor degree in metallurgical engineering from Calcutta University (BE College), India in 1973 and his DIC and PhD in process metallurgy from Imperial College (London University) in 1978. His research interests are materials processing, laser surface modification, and mathematical modeling of the processes. Current research programs in his group include laser surface alloying, laser chemical vapor deposition, laser welding, and transport phenomena modeling of laser alloying and arc welding processes. He is a member of The Metallurgical Society of AIME.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazumder, J. Laser Welding: State of the Art Review. JOM 34, 16–24 (1982). https://doi.org/10.1007/BF03338045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338045

Keywords

Navigation