Skip to main content
Log in

Adipocyte differentiation and transdifferentiation: Plasticity of the adipose organ

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In mammals, the adipose organ is a multi-depot organ made of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. It consists of several sc and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. White areas contain a variable amount of brown adipocytes and their number varies with age, strain and environmental conditions. Brown and white adipocyte are morphologically different. At light microscopy level, brown adipocytes have cytoplasmic lipids arranged as numerous small droplets (multilocularity), while white adipocytes have cytoplasmic lipids arranged in a unique vacuole (unilocularity). Ultrastructurally, brown adipocytes have numerous big mitochondria packed with cristae and containing the thermogenic uncoupling protein 1 (UCP1). In vivo and in vitro studies have shown that the differentiation process of brown and white adipocytes shows distinctive features. Nevertheless, the origin of the adipocyte precursor is still unknown. Recent data have stressed the plasticity of the adipose organ in adult animals. Indeed, under peculiar conditions fully differentiated, white adipocytes can transdifferentiate into brown adipocytes, and viceversa. The ability of the adipose organ to interconvert its main cytotypes in order to meet changing metabolic needs is highly pertinent to the physiopathology of obesity and related to therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cinti S. The adipose organ. Kurtis Ed., Milano, 1999.

    Google Scholar 

  2. Sbarbati A., Morroni M., Zancanaro C., Cinti S. Rat interscapular brown adipose tissue at different ages: a morphometric study. Int. J. Obes. 1991, 15: 581–587.

    CAS  PubMed  Google Scholar 

  3. Bukowiecki L.J. Lipid metabolism in brown adipose tissue. In: Trayhurn P., Nicholls D.G. (Eds.), Brown adipose tissue. Edward Arnold, London, 1986, p. 105.

    Google Scholar 

  4. Néchad M. Structure and development of brown adipose tissue. In: Trayhurn P., Nicholls D.G. (Eds.), Brown adipose tissue. Edward Arnold, London, 1986, p. 1.

    Google Scholar 

  5. Foster D.O., Depocas F., Zaror-Beherens G. Unilaterality of the sympathetic innervation of each pad of rat interscapular brown adipose tissue. Can. J. Physiol. Pharmacol. 1982, 60: 107–113.

    Article  CAS  PubMed  Google Scholar 

  6. Nnodim J.O., Lever J.D. Neural and vascular provisions of rat interscapular brown adipose tissue. Am. J. Anat. 1988, 182: 283–293.

    Article  CAS  PubMed  Google Scholar 

  7. Norman D., Mukherjee S., Symons D., Jung R.T., Lever J.D. Neuropeptides in interscapular and perirenal brown adipose tissue in the rat: a plurality of innervation. J. Neurocytol. 1988, 17: 305–311.

    Article  CAS  PubMed  Google Scholar 

  8. De Matteis R., Ricquier D., Cinti S. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 1998, 27: 877–886.

    Article  PubMed  Google Scholar 

  9. Cannon B., Nedergaard J., Lundberg J.M., Hokfelt T., Terenius L., Goldstein M. Neuropeptide tyrosine (NPY) is co-stored with noradrenaline in vascular but not in parenchymal sympathetic nerves of brown adipose tissue. Exp. Cell Res. 1986, 164: 546–550.

    Article  CAS  PubMed  Google Scholar 

  10. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 1990, 4: 2890–2898.

    CAS  PubMed  Google Scholar 

  11. Nisoli E., Tonello C., Benarese M., Liberini P., Carruba M.O. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 1996, 137: 495–503.

    CAS  PubMed  Google Scholar 

  12. Bartness T.J., Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am. J. Physiol. 1998, 275: R1399–R1411.

    CAS  PubMed  Google Scholar 

  13. Napolitano L., Fawcett D. The fine structure of brown adipose tissue in the newborn mouse and rat. J. Biophys. Biochem. Cytol. 1958, 4: 685–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Napolitano L. The differentiation of white adipose tissue: an electron microscopic study. J. Cell Biol. 1963, 18: 663–673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Afzelius B.A. Brown adipose tissue: its gross anatomy, histology, and cytology. In: Lindberg O. (Ed.), Brown adipose tissue. Elsevier, Amsterdam, 1970, p. 1.

    Google Scholar 

  16. Zhang Y.Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature 1998, 395: 763–770.

    Article  CAS  PubMed  Google Scholar 

  18. Trayhurn P., Hoggard N., Rayner D.V. White adipose tissue as a secretory and endocrine organ: leptin and other secreted proteins In: Klaus S. (Ed.), Adipose tissues. Eurekah.com/ Landes Bioscience, Georgetown, 2001, p. 158.

    Google Scholar 

  19. Migliorini R.H., Garofalo M.A., Kettelhut I.C. Increased sympathetic activity in rat white adipose tissue during prolonged fasting. Am. J. Physiol. 1997, 272: R656–R661.

    CAS  PubMed  Google Scholar 

  20. Bartness T.J., Demas G.E., Song C.K. Central nervous system innervation of white adipose tissue. In: Klaus S. (Ed.), Adipose tissues. Eurekah.com/Landes Bioscience, Georgetown, 2001, p. 116.

    Google Scholar 

  21. Hodgson A.J., Wilkinson C., Abolhasan P., Llewellyn-Smith I.J. Differential control of lipolysis by sympathetic nerves. Int. J. Obes. 2001, 25: O27 (Abstract).

    Google Scholar 

  22. Cannon B., Hedin A., Nedergaard J. Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett. 1982, 150: 129–132.

    Article  CAS  PubMed  Google Scholar 

  23. Cinti S., Zancanaro C., Sbarbati A. et al. Immunoelectron microscopical identification of the uncoupling protein in brown adipose tissue mitochondria. Biol. Cell 1989, 67: 359–362.

    Article  CAS  PubMed  Google Scholar 

  24. Klaus S., Casteilla L., Bouillaud F., Ricquier D. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 1991, 23: 791–801.

    Article  CAS  PubMed  Google Scholar 

  25. Ricquier D., Casteilla L., Bouillaud F. Molecular studies of the uncoupling protein. FASEB J. 1991, 5: 2237–2242.

    CAS  PubMed  Google Scholar 

  26. Garruti G., Ricquier D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obes. 1992, 16: 383–390.

    CAS  Google Scholar 

  27. Klaus S. Brown adipose tissue: thermogenic function and its physiological regulation. In: Klaus S. (Ed.), Adipose tissues. Eurekah.com/Landes Bioscience, Georgetown, 2001, p. 56.

    Google Scholar 

  28. Klaus S. Brown adipocyte differentiation and function in energy metabolism. In: Klaus S. (Ed.), Adipose tissues. Eurekah. com/Landes Bioscience, Georgetown, 2001, p. 82.

    Google Scholar 

  29. Himms-Hagen J. Brown adipose tissue and cold-acclimation. In: Trayhurn P., Nicholls D.G. (Eds.), Brown adipose tissue. Edward Arnold, London, 1986, p. 214.

  30. Girardier L., Seydoux J. Neural control of brown adipose tissue. In: Trayhurn P., Nicholls D.G. (Eds.), Brown adipose tissue. Edward Arnold, London, 1986, p. 122.

    Google Scholar 

  31. Strosberg A.D., Pietri-Rouxel F. Function and regulation of the beta 3-adrenoceptor. Trends Pharmacol. Sci. 1996, 17: 373–381.

    Article  CAS  PubMed  Google Scholar 

  32. Rothwell N.J., Stock M.J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 1979, 281: 31–33.

    Article  CAS  PubMed  Google Scholar 

  33. Lowell B.B., Susulic V., Hamann A. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993, 366: 740–742.

    Article  CAS  PubMed  Google Scholar 

  34. Enerback S., Jacobsson A., Simpson E.M., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997, 387: 90–94.

    Article  CAS  PubMed  Google Scholar 

  35. Matthias A., Ohlson K.B., Fredriksson J.M., Jacobsson A., Nedergaard J., Cannon B. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scidinduced thermogenesis. J. Biol. Chem. 2000, 275: 25073–25081.

    Article  CAS  PubMed  Google Scholar 

  36. Kopecky J., Clarke J., Enerback B., Spiegelman B., Kozak L.P. Ectopic expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Inv. 1995, 96: 2914–2923.

    Article  CAS  Google Scholar 

  37. Rossmeisl M., Barbatelli G., Flachs P. et al. Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur. J. Biochem. 2002, 269: 19–28.

    Article  CAS  PubMed  Google Scholar 

  38. Spiegelman B.M., Choy L., Hotamisligil G.S., Graves R.A., Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J. Biol. Chem. 1993, 268: 6823–6826.

    CAS  PubMed  Google Scholar 

  39. Gregoire F.M., Smas C.M., Sul H.S. Understanding adipocyte differentiation. Physiol. Rev. 1998, 78: 783–809.

    CAS  PubMed  Google Scholar 

  40. Rosen E.D., Walkey C.J., Puigserver P., Spiegelman B.M. Transcriptional regulation of adipogenesis. Genes Dev. 2000, 14: 1293–1307.

    CAS  PubMed  Google Scholar 

  41. Ailhaud G. Development of white adipose tissue and adipocyte differentiation. In: Klaus S. (Ed.), Adipose tissues. Eurekah.com/Landes Bioscience, Georgetown, 2001, p. 27.

    Chapter  Google Scholar 

  42. Zancanaro C., Carnielli V.G., Moretti C., Benati D., Gamba P. An ultrastructural study of brown adipose tissue in preterm human new-borns. Tissue Cell 1995, 27: 339–348.

    Article  CAS  PubMed  Google Scholar 

  43. Kim H.S., Hausman G.J., Hausman D.B., Martin R.J., Dean R.G. The expression of peroxisome proliferator-activated receptor gamma in pig fetal tissue and primary stromalvascular cultures. Obes. Res. 2000, 8: 83–88.

    Article  CAS  PubMed  Google Scholar 

  44. Hauner H., Skurk T. Adipose tissue pathology in human obesity. In: Klaus S. (Ed.), Adipose tissues. Eurekah.com/ Landes Bioscience, Georgetown, 2001, p. 27.

    Google Scholar 

  45. Barnard T., Skàla J. The development of brown adipose tissue. In: Lindberg O. (Ed.), Brown adipose tissue. Elsevier, New York, 1970, p. 33.

    Google Scholar 

  46. HoustekJ.KopeckyJ.RychterZ.SoukupT.Uncouplingproteininembryonicbrownadiposetissue—existenceofnthermogenicandthermogenicmitochondria.Biochim.Biophys.Acta198893519–25

    Article  CAS  PubMed  Google Scholar 

  47. Van R.L.R., Bayliss C.E., Roncari D.A.K. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J. Clin. Invest. 1976, 58: 699–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Slavin B.G. Fine structural studies on white adipocyte differentiation. Anat. Rec. 1979, 195: 63–72.

    Article  CAS  PubMed  Google Scholar 

  49. Cinti S., Cigolini M., Bosello O., Björntorp P. A morphological study of the adipocyte precursor. J. Submicrosc. Cytol. Pathol. 1984, 16: 243–251.

    CAS  Google Scholar 

  50. Barbatelli G., Morroni M., Vinesi P., Cinti S., Michetti F. S- 100 protein in rat brown adipose tissue under different functional conditions: a morphological, immunocytochemical, and immunochemical study. Exp. Cell Res. 1993, 208: 226–231.

    Article  CAS  PubMed  Google Scholar 

  51. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell. Biol. 2001, 33: 637–668.

    Article  CAS  PubMed  Google Scholar 

  52. Prins J.B., O’Rahilly S. Regulation of adipose cell number in man. Clin. Sci. 1997, 92: 3–11.

    CAS  PubMed  Google Scholar 

  53. Hausman D.B., DiGirolamo M., Bartness T.J., Hausman G.J., Martin R.J. The biology of white adipocyte proliferation. Obes. Rev. 2001, 2: 239–254.

    Article  CAS  PubMed  Google Scholar 

  54. Wajchenberg B.L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 2000, 21: 697–738.

    Article  CAS  PubMed  Google Scholar 

  55. Carey D.G., Nguyen T.V., Campbell L.V., Chisholm D.J., Kelly P. Genetic influences on central abdominal fat: a twin study. Int. J. Obes. 1996, 20: 722–726.

    CAS  Google Scholar 

  56. Björntorp P. Size, number and function of adipose tissue cells in human obesity. Horm. Metab. Res. 1974, 4: 77–83.

    PubMed  Google Scholar 

  57. Di Girolamo M., Fine J.B., Tagra K., Rossmanith R. Qualitative regional differences in adipose tissue growth and cellularity in male Wistar rats fed ad libitum. Am. J. Physiol. 1998, 274: R1460–R1467.

    Google Scholar 

  58. Lemmonier D. Effect of age, sex, and site on the cellularity of the adipose tissue in mice and rats rendered obese by a high fat diet. J. Clin. Invest. 1972, 51: 2907–2915.

    Article  Google Scholar 

  59. Faust I.M., Johnson P.R., Stern J.S., Hirsch J. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am. J. Physiol. 1978, 235: E279–E286.

    CAS  PubMed  Google Scholar 

  60. Björntorp B. Adipose tissue distribution and function. Int. J. Obes. 1991, 15: 67–81.

    PubMed  Google Scholar 

  61. Ahima R.S., Flier J.S. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 2000, 11: 327–332.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson P.R., Hirsch J. Cellularity of adipose depots in six strains of genetically obese mice. J. Lipid Res. 1972, 13: 2–11.

    CAS  PubMed  Google Scholar 

  63. Machinal-Quélin F., Dieudonné M.N., Leneveu M.C., Giudicelli Y., Pecquery R. Adipogenic effects of leptin are mediated by functional leptin receptors in rat preadipocytes. Int. J. Obes. 2001 25: S29 (Abstract).

    Google Scholar 

  64. De Matteis R., Dashtipour K., Ognibene A., Cinti S. Localization of leptin receptor splice variants in mouse peripheral tissues by immunohistochemistry. Proc. Nutr. Soc. 1998, 57: 441–448.

    Article  PubMed  Google Scholar 

  65. Imai T., Jiang M., Chambon P., Metzger D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifeninducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc. Natl. Acad. Sci. USA 2001, 98: 224–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Valet P., Grujic D., Wade J. et al. Expression of human α2- adrenergic receptors in adipose tissue of β3-adrenergic receptor-deficient mice promotes diet-induced obesity. J. Biol. Chem. 2000, 275: 34797–34802.

    Article  CAS  PubMed  Google Scholar 

  67. Valet P., Pagès C., Jeanneton O. et al. Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. J. Clin. Inv. 1998, 101: 1431–1438.

    Article  CAS  Google Scholar 

  68. Bulbarelli A., Morroni M., Nisoli E., Carruba M.O., Cinti S. Brown and white adipocytes are differently prone to apoptotic stimuli. Int. J. Obes. 2001, 25: S11 (Abstract).

    Google Scholar 

  69. Cheng A.Y.M., Deitel M., Ronkari A.K. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J. Clin. Invest. 1976, 58: 699–704.

    Article  Google Scholar 

  70. Van R.L.R., Ronkari A.K. Complete differentiation of adipocyte precursors. Cell Tissue Res. 1978, 195: 317–329.

    CAS  PubMed  Google Scholar 

  71. Petruschke T.H., Hauner H. Tumor necrosis factor-a prevents the differentiation of human adipocyte precursor cells and causes delipidation of newly developed fat cells. J. Clin. Endocrinol. Metab. 1993, 76: 742–747.

    CAS  PubMed  Google Scholar 

  72. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity- linked insulin resistance. Science 1993, 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  73. Nisoli E., Briscini L., Giordano A. et al. Tumor necrosis factor a mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity. Proc. Natl. Acad. Sci. USA 2000, 97: 8033–8038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Pagano C., Calcagno A., Dorigo A. et al. Administration of all-trans retinoic acid inhibits adipose tissue deposition and induces apoptosis of adipose cells in lean and obese (fa/fa) zucker rats. Int. J. Obes. 2001, 25 (Suppl. 2): S3 (Abstract).

    Google Scholar 

  75. Geloen A., Collet A.F., Bukowiecki L.J. Role of sympathetic innervation in brown adipocyte proliferation. Am. J. Physiol. 1992, 263: R1176–R1181.

    CAS  PubMed  Google Scholar 

  76. Morroni M., Barbatelli G., Zingaretti M.C., Cinti S. Immunohistochemical, ultrastructural and morphometric evidence for brown adipose tissue recruitment due to cold acclimation in old rats. Int. J. Obes. 1995, 19: 126–131.

    CAS  Google Scholar 

  77. Huttunen P., Hirvonen J., Kinnula V. The occurrence of brown adipose tissue in outdoor workers. Eur. J. Appl. Physiol. 1981, 46: 339–345.

    Article  CAS  Google Scholar 

  78. Kortelainen M.-L., Pelletier G., Ricquier D., Bukowiecki L.J. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J. Histochem. Cytochem. 1993, 41: 759–764.

    Article  CAS  PubMed  Google Scholar 

  79. Ricquier D., Néchad M., Mory G. Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J. Clin. Endocrinol. Metab. 1982, 54: 803–807.

    Article  CAS  PubMed  Google Scholar 

  80. Bouillaud F., Combes-George M., Ricquier D. Mitochondria of human brown adipose tissue contain a 32000- Mr uncoupling protein. Biosci. Rep. 1983, 3: 775–780.

    Article  CAS  PubMed  Google Scholar 

  81. Lean M.E.J., James W.P.T., Jennings G., Trayhurn P. Brown adipose tissue in patients with pheochromocytoma. Int. J. Obes. 1986, 10: 219–227.

    CAS  PubMed  Google Scholar 

  82. Loncar D. Convertible adipose tissue in mice. Cell Tissue Res. 1991, 266: 149–161.

    Article  CAS  PubMed  Google Scholar 

  83. Giordano A., Coppari R., Castellucci M., Cinti S. Sema3a is produced by brown adipocytes and its secretion is reduced following cold acclimation. J. Neurocytol. 2001, 30: 5–10.

    Article  CAS  PubMed  Google Scholar 

  84. Cinti S., Frederich R.C., Zingaretti M.C., De Matteis R., Flier J.S., Lowell B.B. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 1997, 138: 797–804.

    CAS  PubMed  Google Scholar 

  85. Cancello R., Zingaretti M.C., Sarzani R., Ricquier D., Cinti S. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology 1998, 139: 4747–4750.

    Article  CAS  PubMed  Google Scholar 

  86. Champigny O., Ricquier D., Blondel O., Mayer R.M., Briscoe M.G., Halloway B.R. β3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl. Acad. Sci. USA 1991, 88: 10774–10777.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Cousin B., Cinti S., Morroni M. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 1992, 103: 931–942.

    CAS  PubMed  Google Scholar 

  88. Himms-Hagen J., Cui J., Danforth E. et al. Effect of CL- 316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. 1994, 266: R1371–R1382.

    CAS  PubMed  Google Scholar 

  89. Collins S., Daniel K.W., Petro E., Surwitt R.S. Strain-specific response to β3-adrenergic receptor agonist treatment on diet-induced obesity in mice. Endocrinology 1997, 138: 405–413.

    CAS  PubMed  Google Scholar 

  90. Ghorbani M., Claus T.H., Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 1997, 54: 121–131.

    Article  CAS  PubMed  Google Scholar 

  91. Ghorbani M., Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of besity and diabetes in Zucker fa/fa rats. Int. J. Obes. 1997, 21: 465–475.

    Article  CAS  Google Scholar 

  92. Guerra C., Koza R.A., Yamashita H., Walsh K., Kozack L.P. Emergence of brown adipocytes in white fat in mice is under genetic control. J. Clin. Invest. 1998, 102: 412–420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Geloen A., Collet A.F., Guay G., Bukowiecki L.J. Beta adrenergic stimulation of brown adipocyte proliferation. Am. J. Physiol. 1988, 254: C175–C182.

    CAS  PubMed  Google Scholar 

  94. Geloen A., Collet A.F., Guay G., Bukowiecki L.J. In vivo differentiation of brown adipocytes in adult mice: an electron microscopic study. Am. J. Anat. 1990, 188: 366–372.

    Article  CAS  PubMed  Google Scholar 

  95. Goglia F., Geloen A., Lanni A., Minaire Y., Bukowiecki L.J. Morphometric-stereologic analysis of brown adipocyte differentiation in adult mice. Am. J. Physiol. 1992, 262: C1018–C1023.

    CAS  PubMed  Google Scholar 

  96. Bronnikov G., Houstek J., Nedergaard J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. J. Biol. Chem. 1992, 267: 2006–2013.

    CAS  PubMed  Google Scholar 

  97. Bronnikov G., Bengtsson T., Kramarova L., Golozoubova V., Cannon B., Nedergaard J. Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 1999, 140: 4185–4197.

    CAS  PubMed  Google Scholar 

  98. Granneman J.G., Lahners K.N., Chaudhry A. Molecular cloning and expression of the rat beta 3-adrenergic receptor. Mol. Pharmacol. 1991, 40: 895–899.

    CAS  PubMed  Google Scholar 

  99. Chamberlain P.D., Jennings K.H., Paul F. et al. The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3- adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int. J. Obes. 1999, 23: 1057–1065.

    Article  CAS  Google Scholar 

  100. Himms-Hagen J., Melnyk A., Zingaretti M.C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL- 316243-treated rats derive directly from white adipocytes. Am. J. Physiol. 2000, 279: C670–C681.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Cinti.

Additional information

In this review, all descriptions will be intended of the adipose organ of rats and mice if not differently specified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinti, S. Adipocyte differentiation and transdifferentiation: Plasticity of the adipose organ. J Endocrinol Invest 25, 823–835 (2002). https://doi.org/10.1007/BF03344046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344046

Key-words

Navigation