Skip to main content
Log in

Climate change: The evidence and our options

  • Published:
The Behavior Analyst Aims and scope Submit manuscript

Abstract

Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth’s climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, D., & Brovkin, V. (2008). Millennial atmospheric lifetime of anthropogenic CO2. Climatic Change, 90(3), 283–297.

    Article  Google Scholar 

  • Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., & Valentine, V. B. (2002). Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297, 382–386.

    Article  PubMed  Google Scholar 

  • Bar-Matthews, M., Ayalon, A., Kaufman, A., & Wasserburg, G. J. (1999). The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters, 166, 85–95.

    Article  Google Scholar 

  • Baroni, C., & Orombelli, G. (1996). The Alpine “Iceman” and Holocene climatic change. Quaternary Research, 46, 78–83.

    Article  Google Scholar 

  • Boden, T. A., Marland, G., & Andres, R. J. (2009). Global, regional, and national fossilfuel CO2 emissions. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Retrieved from http://cdiac.ornl.gov/trends/emis/tre_glob.html

    Google Scholar 

  • Bradley, R. S., Keimig, F. T., Diaz, H. F., & Hardy, D. R. (2009). Recent changes in the freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophysical Research Letters, 36, L17701.

    Article  Google Scholar 

  • Bradley, R. S., Vuille, M., Diaz, H. F., & Vergara, W. (2006). Threats to water supplies in the tropical Andes. Science, 312, 1755–1756.

    Article  PubMed  Google Scholar 

  • Brewer, P. G., Friederich, G., Peltzer, E. T., & Orr, F. M., Jr. (1999). Direct experiments on the ocean disposal of fossil fuel CO2. Science, 284, 943–945.

    Article  PubMed  Google Scholar 

  • Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G., & Cook, E. R. (2002). Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature, 376, 156–159.

    Article  Google Scholar 

  • Buffen, A. M., Thompson, L. G., Mosley-Thompson, E., & Huh, K.-I. (2009). Recently exposed vegetation reveals Holocene changes in the extent of the Quelccaya ice cap, Peru. Quaternary Research, 72, 157–163.

    Article  Google Scholar 

  • Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J-M., Schwander, J., et al. (1997). Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysical Research, 102, 15,987–15,997.

    Article  Google Scholar 

  • Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., et al. (2001). Changes in sea level. In Climate change 2001. The scientific basis. Contributions of Working Group I to the 3rd assessment of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Climate change and the integrity of science. (2010). Retreived from http://www.pacinst.org/climate/climate_statement.pdf

  • Crowley, T. J., & Lowery, T. S. (2000). How warm was the medieval warm period? AMBIO: A Journal of the Human Environment, 29, 51–54.

    Article  Google Scholar 

  • Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D., et al. (2008). Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320, 778–781.

    Article  PubMed  Google Scholar 

  • Dowsett, H. J., Thompson, R., Barron, J., Cronin, T., Fleming, F., Ishman, S., et al. (1994). Joint investigations of the middle Pleistocene climate 1: PRISM paleoenvironmental reconstructions. Global and Planetary Change, 9, 169–195.

    Article  Google Scholar 

  • Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295, 2250–2253.

    Article  PubMed  Google Scholar 

  • Forster, P., Ramaswamy, V., Arttaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate change 2007: The physical science basis. Contributions of Working Group I to the 4th assessment of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Govindasamy, B., & Caldeira, K. (2000). Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophysical Research Letters, 27, 2141–2144.

    Article  Google Scholar 

  • Hall, M. H. P., & Fagre, D. B. (2003). Modeled climate-induced glacier change in Glacier National Park, 1850–2100. BioScience, 53, 131–140.

    Article  Google Scholar 

  • Jones, P. D., Briffa, K. R., Barnett, T. P., & Tett, S. F. B. (1998). High-resolution paleoclimate records for the last millennium: Interpretation, integration and comparison with general circulation model control-run temperatures. The Holocene, 8, 455–471.

    Article  Google Scholar 

  • Kehrwald, N. M., Thompson, L. G., Yao, T., Mosley-Thompson, E., Schotterer, U., Alfimov, V., et al. (2008). Mass loss on Himalayan glacier endangers water resources. Geophysical Research Letters, 35, L22503.

    Article  Google Scholar 

  • Lemke, P., Ren, J., Alley, R. B., Carrasco, J., Flato, G., Fujii, Y., et al. (2007). Observations: Changes in snow, ice and frozen ground in climate change 2007: The physical science basis. Contributions of Working Group I to the 4th assessment of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., et al. (2008). Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386.

    Article  PubMed  Google Scholar 

  • Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382.

    Article  PubMed  Google Scholar 

  • Mann, M. E., Bradley, R. S., & Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters, 26, 759–762.

    Article  Google Scholar 

  • Mann, M. E., & Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters, 30, 1820.

    Google Scholar 

  • Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., et al. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326, 1256–1260.

    Article  PubMed  Google Scholar 

  • Marland, G., Boden, T. A., & Andres, R. (2006). Global, regional, and national CO2 emissions. In Trends: A compendium of data on global change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Retrieved from http://cdiac.esd.ornl.gov/trends/emis/tre_glob.htm

    Google Scholar 

  • Matsuo, K., & Heki, K. (2010). Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290, 30–36.

    Article  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2007). Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophysical Research Letters, 34, L19709.

    Article  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In Climate change 2007: The physical science basis. Contributions of Working Group I to the 4th assessment of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Meier, M. F., Dyurgerov, M. B., Rick, U. K., O’Neel, S., Pfeffer, W. T., et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 1064–1067.

    Article  PubMed  Google Scholar 

  • Mercer, J. H. (1978). West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271, 321–325.

    Article  Google Scholar 

  • Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., & Karlen, W. (2005). Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613–617.

    Article  PubMed  Google Scholar 

  • Molnia, B. F. (2007). Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate. Global and Planetary Change, 56, 23–56.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration. (2009). State of the climate global analysis. Retrieved from http://www.ncdc.noaa.gov/sotc/?report=global&year=2009&month=13&submitted=Get+Report#trends

  • National Oceanic and Atmospheric Administration. (2010). May 2010 global state of the climate—Supplemental figures and information. Retrieved from whttp://www.noaanews.noaa.gov/stories2010/20100615_globalstats_sup.html

  • National Research Council. (2006). Surface temperature reconstructions for the last 2,000 years. Washington DC: National Academy of Sciences.

    Google Scholar 

  • National Research Council. (2010). Limiting the magnitude of future climate change: Report in brief. Washington, DC: National Academies Press. Retrieved from http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/Limiting_Report_Brief_final.pdf

    Google Scholar 

  • Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308, 675–677.

    Article  PubMed  Google Scholar 

  • Parkinson, C. L. (2010). Coming climate crisis? Consider the past, beware the big fix. Lanham, MD: Rowland & Littlefield.

    Google Scholar 

  • Perovich, D. K., & Richter-Menge, J. A. (2009). Loss of sea ice in the Arctic. Annual Review of Marine Science, 1, 417–441.

    Article  PubMed  Google Scholar 

  • Pew Research Center. (2010). Fewer Americans see solid evidence of global warming. Retrieved from http://pewresearch.org/pubs/1386/cap-and-trade-global-warming-opinion

  • Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., et al. (1987). Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science, 238, 945–950.

    Article  PubMed  Google Scholar 

  • Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 315, 368–370.

    Article  PubMed  Google Scholar 

  • Schmidle, N. (2009). Wanted:Anew home for my country. Retrieved from http://www.nytimes.com/2009/05/10/magazine/10MALDIVES-t.html?_r=3&partner=rss&emc=rss&pagewanted=all

  • Seidel, D. J., Fu, Q., Randel, W. J., & Reichler, T. J. (2008). Widening of the tropical belt in a changing climate. Nature Geoscience, 1, 21–24.

    Google Scholar 

  • Seidel, D. J., & Randel, W. J. (2007). Recent widening of the tropical belt: Evidence from tropopause observations. Journal of Geophysical Research, 112, D20113.

    Article  Google Scholar 

  • Thompson, L. G. (2000). Ice core evidence for climate change in the tropics: Implications for our future. Quaternary Science Reviews, 19, 19–35.

    Article  Google Scholar 

  • Thompson, L. G., Brecher, H. H., Mosley-Thompson, E., Hardy, D. R., & Mark, B. G. (2009). Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences, 106, 19,770–19,775.

    Article  Google Scholar 

  • Thompson, L. G., Davis, M. E., & Mosley-Thompson, E. (1994). Glacial records of global climate: A 1500-year tropical ice core record of climate. Human Ecology, 22, 83–95.

    Article  Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Brecher, H. H., Davis, M. E., Leon, B., Les, D., et al. (2006). Evidence of abrupt tropical climate change: Past and present. Proceedings of the National Academy of Sciences, 103, 10,536–10,543.

    Article  Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Bolzan, J. F., Dai, J., Klein, L., et al. (1990). Glacial stage ice-core records from the subtropical Dunde ice cap, China. Annals of Glaciology, 14, 288–297.

    Article  Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., et al. (2002). Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science, 289, 589–593.

    Article  Google Scholar 

  • Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., et al. (1997). Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276, 1821–1825.

    Article  Google Scholar 

  • Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., & Lin, P.-N. (2000). A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 289, 1916–1919.

    Article  PubMed  Google Scholar 

  • Vergara, W., Deeb, A. M., Valencia, A. M., Bradley, R. S., Francou, B., Zarzar, A., et al. (2007). Economic impacts of rapid glacier retreat in the Andes. EOS, 88, 261–268.

    Article  Google Scholar 

  • Vince, G. (2010). Dams for Patagonia. Newsfocus. Science, 329, 382–385.

    Article  PubMed  Google Scholar 

  • Wigley, T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452–454.

    Article  PubMed  Google Scholar 

  • Yao, T., Pu, J., Lu, A., Wang, Y., & Yu, W. (2007). Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China and surrounding regions. Arctic and Alpine Research, 39, 642–650.

    Article  Google Scholar 

  • Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., & Steffen, K. (2002). Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218–222.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lonnie G. Thompson.

Additional information

This paper is based on the Presidential Scholar’s Address given at the 35th annual meeting of the Association for Behavior Analysis International, Phoenix, Arizona. I am grateful to Bill Heward for inviting me to give the address. I thank Mary Davis for her help editing the text and figures. I wish to thank all the field and laboratory team members from the Byrd Polar Research Center who have worked so diligently over the years. I am especially indebted to the hard work of our current research team: Ellen Mosley-Thompson, Henry Brecher, Mary Davis, Paolo Gabrielli, Ping-Nan Lin, Matt Makou, Victor Zagorodnov, and all of our graduate students. Funding for our research over the years has been provided by the National Science Foundation’s Paleoclimate Program, the National Oceanic and Atmospheric Administration’s Paleoclimatology and Polar Programs, the National Aeronautic and Space Administration, Gary Comer Foundation, and The Ohio State University’s Climate, Water and Carbon Program. This is Byrd Polar Research Center Publication 1402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, L.G. Climate change: The evidence and our options. BEHAV ANALYST 33, 153–170 (2010). https://doi.org/10.1007/BF03392211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03392211

Key words

Navigation