Skip to main content

Fundamental processes of craze growth and fracture

  • Conference paper
  • First Online:
Crazing in Polymers Vol. 2

Part of the book series: Advances in Polymer Science ((POLYMER,volume 91/92))

Abstract

Recent advances in quantitative microscopy and low-angle electron diffraction methods have made it possible to probe the fundamental processes of craze fibril formation and craze fibril breakdown. Both the scale of fibrillation within the craze and the magnitude of the crazing stress may be successfully described by a variant of the Taylor meniscus instability process. Within this framework, the key parameter in governing craze growth is the craze surface energy Γ. In turn Γ reflects the mechanism by which entangled strands are lost (through either chain scission or chain disentanglement) in producing the surfaces of the craze fibrils. A new model, which describes the temperature, strain rate and molecular weight dependence of the crazing stress is presented. This approach provides a clear rationale for the hitherto confusing data on crazing to shear deformation transitions in a wide variety of polymers. Moreover, the modification of the polymer network during craze formation has important implications for craze breakdown. In particular, at low temperatures where chain scission is the dominant process, the molecular weight of the polymer in the fibrils is markedly reduced. A molecular description of craze fibril breakdown based on microscopic measurements of the scale of the fibrillation in the craze and the statistics of craze fibril breakdown is proposed. Satisfactory agreement between the predictions of this model and the experimental data for a variety of glassy polymers is found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

D:

average craze fibril diameter

Do :

average craze fibril spacing as well as average fibril diameter before deformation (diameter of the “phantom” fibril cylinder)

F:

force on the craze fibril

G oN :

shear modulus of the rubbery plateau

Me :

entanglement molecular weight

Mn :

number average molecular weight of polymer before crazing

M′n :

number average molecular weight of polymer in fibrils after crazing

Mo :

molecular weight of mer repeat unit

Mv :

viscosity average molecular weight of polymer before crazing

Mw :

weight average molecular weight of polymer before crazing

M(i):

the number average molecular weight of a fibril in which i strands have survived

Na :

avogadro's number

Pdis(i):

disentanglement probability of a group of i strands in a fibril following the initial chain scission

Psurvival(i):

Probability that i strands in a fibril survive following the initial chain scission in forming the fibril

Ps(0):

probability that all strands in a fibril break

Psd :

probability that a given fibril will fail by scission followed by disentanglement of all of its remaining i strands

Psdf :

fibril failure probability Psd of film unaffected by stress concentrating particles

Psdc :

fibril failure probability Psd in the regions affected by the stress concentration around dust particles

R:

root mean square end-to-end distance of chain with mass M

S:

average tensile stress on craze interface

S1 :

average craze interface stress at a plastic strain of 1

Tg :

the glass transition temperature

U:

energy required to break a single primary bond along polymer backbone

V:

risk volume (i.e. total volume of polymer converted to craze fibrils)

Vb :

volume in which one craze fibril breakdown will be encountered at a reference stress σb

V0 :

initial volume of polymer within one grid square

a:

bond distance

ao :

effective area of polymer chain

ap :

persistence length of polymer strand

d:

root mean square end-to-end distance of a chain of molecular weight Me, the entanglement mesh size

〈f〉:

average force per effective strand (=F/ne)

fb :

breaking force of polymer strand

fd :

average force required to disengage polymer molecule from its surroundings

fm :

force on a mer in a polymer molecule

h:

thickness of strain softened polymer layer at the active zone

le :

chain contour length between entanglements

lo :

average projected length of mer units along chain

n:

non-Newtonian flow law exponent

vm :

monomer velocity relative to its surroundings

x:

fractional distance along stretched polymer molecule from one of its ends

xc :

critical fractional distance along stretched polymer molecule beyond which the force in the molecule exceeds the breaking force fb

Γ:

total craze fibril surface energy (tension)

Δv:

differential velocity between “upper” and “lower” sets of entanglements during drawing into the fibril

Λ:

density of “intrinsic weak spots” in polymer film

β:

coefficient of proportionality between average hydrostatic stress (σo) and tensile stress S at craze interface

n(x):

number of monomers from end of the chain at x

ne :

mean number of effectively entangled strands that survive craze fibrillation

no :

total number of entangled strands in the “phantom fibril” from which the craze fibril is produced

pc, pb, pf :

cumulative number fraction of grid squares that exhibit craze formation, craze fibril breakdown, and catastrophic fracture, respectively

q:

probability that a given entangled strand survives craze fibril formation

tdis(i):

disentanglement time of i strands in a fibril that survive fibril formation

v:

craze interface velocity

vf :

volume fraction of polymer within craze

vλ :

craze interface velocity required to produce a constant λ (due to chain disentanglement) above the “natural” extension ratio of the craze

γ:

van der Waals (intermolecular) surface energy

ε:

total tensile strain

\(\dot \varepsilon\) :

equivalent tensile strain rate

εc, εb, εf :

median tensile strains for craze formation, craze fibril breakdown, and catastrophic fracture

\(\dot \varepsilon _f\), σfc:

material parameters in non-Newtonian flow law \(\dot \varepsilon = \dot \varepsilon _f (\sigma /\sigma _{fc} )^n\)

εp :

plastic strain in polymer film (=ε − εc)

εw :

Weibull scale parameter

ζo :

monomeric friction coefficient

λ:

craze fibril extension ratio (=1/vf)

〈λ〉:

average extension ratio in stretch zone

λd :

additional extensional ratio above the (low temperature or high strain rate) “natural” extension ratio of the craze

λDZ :

extension ratio within deformation zone

λlt :

low temperature or high strain rate “natural” extension ratio of the craze

λmax :

theoretical maximum extension ratio for a single strand

νe :

density of strands in the entanglement network

νx :

density of crosslinked strands

ξi :

region adjacent to craze interface in which polymer chains (at high T's and low v's) can disentangle during craze widening

ξ:

probability of disentanglement for a given strand

ϱ:

mass density of polymer

ϱw :

Weibull modulus

σ:

equivalent tensile stress

o)m :

average hydrostatic stress ahead of craze tip or craze interface

o)s :

hydrostatic stress at the surface of the void “ceiling” between fibrils at craze interface

σy :

polymer yield stress

σyo :

polymer yield stress at \(\dot \varepsilon _y\)

τd :

time for complete disentanglement of polymer chain

τres :

effective residence time of strands near the craze matrix interface during which the monomeric friction coefficient is small enough that they can still disentangle (or in the distance ξi just below it)

ϕ:

volume fraction of the polymer film affected by stress concentrating particles

ω:

exponent on the plastic strain εp that describes the dependence of the drawing stress on εp

8 References

  1. Kramer EJ (1979) Environmental cracking of polymers, Chap. 3 in: Andrews EH (ed) Developments in polymer fracture. Applied Sci., Barking, UK, Ch 3 p 55

    Google Scholar 

  2. Brown HR (1988) Materials Science Reports 2: 315

    Google Scholar 

  3. Brown HR Phys. of Fluids (in press)

    Google Scholar 

  4. Brown HR J. Polymer Sci.-Polymer Phys. (in press)

    Google Scholar 

  5. Wang W-C, Kramer EJ (1982) Polymer 23: 1667

    Article  CAS  Google Scholar 

  6. Kambour RP (1974) J. Polymer Sci. Macromol. Rev. 7: 1

    Article  Google Scholar 

  7. Rabinowitz S, Beardmore P (1972) CRC Reviews in Macromol. Sci. 1: 1

    Google Scholar 

  8. Gent AN (1976) In: Erdogon F (ed) The mechanics of fracture, AMD, ASME New York, vol 19 p 55

    Google Scholar 

  9. Kramer EJ (1983) Adv. in Polymer Sci. In: Kausch HH (ed) Crazing in Polymers, 52/53: 1

    Google Scholar 

  10. Miller P (1987) PhD Thesis, Cornell University

    Google Scholar 

  11. Michler GH (1985) Colloid & Polymer Sci. 263: 462

    Article  CAS  Google Scholar 

  12. Michler GH (1986) Colloid & Polymer Sci. 264: 522

    Article  CAS  Google Scholar 

  13. Lauterwasser BD, Kramer EJ (1979) Phil. Mag. A39: 469

    Google Scholar 

  14. Brown HR (1979) J. Materials Sci. 14: 237

    Article  CAS  Google Scholar 

  15. Brown HR (1983) J. Polymer Sci.-Polymer Phys. 21: 483

    Article  CAS  Google Scholar 

  16. Yang AC-M, Kramer EJ (1985) J. Polymer Sci.-Polymer Phys. 23: 1353

    Article  CAS  Google Scholar 

  17. Yang AC-M, Kramer EJ (1986) J. Materials Sci. 21: 3601

    Article  CAS  Google Scholar 

  18. Paredes E, Fischer EW (1979) Makromol. Chem. 180: 2707

    Article  CAS  Google Scholar 

  19. Brown HR, Kramer EJ (1981) J. Macromol. Sci. Phys. B19: 487

    CAS  Google Scholar 

  20. Brown HR (1982) Ultramicroscopy 7: 263

    Article  CAS  Google Scholar 

  21. Yang A-CM, Kramer EJ, Kuo CC, Phoenix SL (1986) Macromolecules 19: 2020

    Article  CAS  Google Scholar 

  22. Yang, A-CM, Kramer EJ, Kuo CC, Phoenix SL (1986) Macromolecules 19: 2010

    Article  CAS  Google Scholar 

  23. Berger LL, Kramer EJ (1987) J. Mat. Sci. 22: 2739

    Article  CAS  Google Scholar 

  24. Taylor GI (1950) Proc. Roy. Soc. A 210: 192

    Google Scholar 

  25. Saffman PG, Taylor GI (1958) Proc. Roy. Soc. A 245: 312

    Google Scholar 

  26. Fields RJ, Ashby MF (1976) Phil. Mag. 33: 33

    Article  CAS  Google Scholar 

  27. Argon AS, Salama MM (1977) Materials Science & Eng'g 23: 219

    Article  Google Scholar 

  28. Donald AM, Kramer EJ (1981) Phil. Mag. 43: 857

    Article  CAS  Google Scholar 

  29. Donald AH (unpublished observations)

    Google Scholar 

  30. Berger LL (unpublished observations)

    Google Scholar 

  31. Miller P (1987) PhD Thesis, Cornell University

    Google Scholar 

  32. Donald AM, Kramer EJ (1982) Polymer 23: 457

    Article  CAS  Google Scholar 

  33. Donald AM, Kramer EJ (1982) J. Polymer Sci.-Polymer Phys. 20: 899

    Article  CAS  Google Scholar 

  34. Donald AM, Kramer EJ (1982) Polymer 23: 461

    Article  CAS  Google Scholar 

  35. Kramer EJ (1984) Polymer Eng'g & Sci. 24: 761

    Article  CAS  Google Scholar 

  36. Donald AM, Kramer EJ (1982) J. Mat. Sci. 17: 1871

    Article  CAS  Google Scholar 

  37. Donald AM (1985) J. Mat. Sci. 20: 2630

    Article  CAS  Google Scholar 

  38. Berger LL, Kramer EJ (1987) Macromolecules 20: 1980

    Article  CAS  Google Scholar 

  39. McLeish, TCB, Plummer CJG, Donald AM Polymer, in press.

    Google Scholar 

  40. Edwards SF (1967) Proc. Phys. Soc. 92: 9

    Article  CAS  Google Scholar 

  41. Behan P, Bevis M, Hull D (1975) Proc. Roy. Soc. A343: 525

    Google Scholar 

  42. Miller P, Kramer EJ (1988) Proc. of 7th International Conference on Yield, Deformation and Fracture of Polymers, The Plastics and Rubber Institute, London, p 81.1

    Google Scholar 

  43. Berger LL (1989) Macromolecules 22: 3162

    Article  CAS  Google Scholar 

  44. Henkee CS, Kramer EJ (1985) J. Polymer Sci.-Polymer Phys. 22: 721

    Article  Google Scholar 

  45. Miller P, Kramer EJ J. Mat. Sci., in press

    Google Scholar 

  46. Donald AM, Kramer EJ (1982) Proc. of 5th International Conference on Yield, Deformation and Fracture of Polymers, The Plastics and Rubber Institute, London, p 15.1

    Google Scholar 

  47. Henkee CS, Kramer EJ (1986) J. Mat. Sci. 21: 1398

    Article  CAS  Google Scholar 

  48. Kramer O, Carpenter RL, Ty V, Ferry JD (1974) Macromolecules 7: 79

    Article  CAS  Google Scholar 

  49. Kramer O, Ferry JD (1975) Macromolecules 8: 87

    Article  CAS  Google Scholar 

  50. Carpenter RL, Kramer O, Ferry JD (1977) Macromolecules 10: 117

    Article  CAS  Google Scholar 

  51. Carpenter RL, Kramer O, Ferry JD (1978) J. Appl. Polymer Sci. 22: 335

    Article  CAS  Google Scholar 

  52. Carpenter RL, Kan H-C, Ferry JD (1979) Polymer Eng'g & Sci. 19: 267

    Article  CAS  Google Scholar 

  53. Kan H-C, Ferry JD (1978) Macromolecules 11: 1049

    Article  CAS  Google Scholar 

  54. Kan H-C, Carpenter RL, Ferry JD (1979) J. Polymer Sci.-Polymer Phys. 17: 1855

    Article  CAS  Google Scholar 

  55. Kan H-C, Ferry JD (1979) Macromolecules 12: 494

    Article  CAS  Google Scholar 

  56. Kuo CC, Phoenix SL, Kramer EJ (1985) J. Mat. Sci. Lett. 4: 459

    Article  CAS  Google Scholar 

  57. Mills PJ (unpublished observations)

    Google Scholar 

  58. Kruse RL (1981) J. Microscopy 123: 323

    CAS  Google Scholar 

  59. Gebizlioglu OS, Cohen RE, Argon AS (1986) Makromol. Chemie 187: 431

    Article  CAS  Google Scholar 

  60. Brown HR, Argon AS, Cohen RE, Geblizlioglu OS, Kramer EJ (1989) Macromolecules 22: 1002

    Article  CAS  Google Scholar 

  61. Popli R, Roylance D (1982) Polymer Eng'g & Sci. 22: 1046

    Article  CAS  Google Scholar 

  62. Willett JL, O'Connor KM, Wool RP (1986) J. Polym. Sci.-Polym. Phys. 24: 2583

    Article  CAS  Google Scholar 

  63. Glad MD (1986) PhD Thesis, Cornell University

    Google Scholar 

  64. Berger LL, Kramer EJ (1988) J. Mat. Sci. 23: 3536

    Article  CAS  Google Scholar 

  65. Berger LL, Buckley DJ, Kramer EJ, Brown HR, Bubeck RA (1987) J. Polym. Sci.-Polym. Phys. 25: 1670

    Google Scholar 

  66. Wool RP, O'Connor KM (1981) Polymer Eng'g & Sci. 21: 970

    Article  CAS  Google Scholar 

  67. Plummer CJG, Donald AM (1989) J. Mat. Sci. 24: 1399

    Article  CAS  Google Scholar 

  68. Wellinghoff ST, Baer E (1978) J. Appl. Polymer Sci. 22: 2025

    Article  CAS  Google Scholar 

  69. Plummer CJG, Donald AM (1989) J. Polym. Sci-Polym. Phys. 27: 327

    Google Scholar 

  70. Plummer CJG, Donald AM (1988) Proc. of 7th International Conference on Yield, Deformation and Fracture of Polymers, The Plastics and Rubber Institute, London p 19.1

    Google Scholar 

  71. Trassert P, Schirrer R (1983) J. Mat. Sci. 18: 3004

    Article  Google Scholar 

  72. Verhuelpen-Heymans N (1984) Polymer Eng'g & Sci. 24: 809

    Article  Google Scholar 

  73. Kramer EJ, Hart EW (1985) Polymer 24: 1667

    Google Scholar 

  74. Hull D (1970) J. Mat. Sci. 5: 357

    Article  CAS  Google Scholar 

  75. Weibull W (1951) J. Appl. Mech. 18: 293

    Google Scholar 

  76. Gent AN, Thomas AG (1978) J. Polymer Sci. A2 10: 571

    Article  Google Scholar 

  77. Kusy RP, Turner DT (1974) Polymer 15: 394

    Article  CAS  Google Scholar 

  78. Fellers J, Kee BF (1974) J. Appl. Polymer Sci. 18: 2355

    Article  CAS  Google Scholar 

  79. Robertson RE (1976) In: Demin RD, Crugnola AO (eds) ACS Symp. on Toughness and Brittleness of Plastics Adv. Chem. Ser. 154, Amer. Chem. Soc., Washington, p 89

    Google Scholar 

  80. Ferry JD (1980) Viscoelastic properties of polymers, 3rd Ed. Willey, New York, p 330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -H. Kausch

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Kramer, E.J., Berger, L.L. (1990). Fundamental processes of craze growth and fracture. In: Kausch, H.H. (eds) Crazing in Polymers Vol. 2. Advances in Polymer Science, vol 91/92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018018

Download citation

  • DOI: https://doi.org/10.1007/BFb0018018

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51306-3

  • Online ISBN: 978-3-540-46192-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics