Skip to main content

Photobioreactors: Design and performance with respect to light energy input

  • Chapter
  • First Online:
Bioprocess and Algae Reactor Technology, Apoptosis

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 59))

Abstract

Photosynthesis is the most important natural process for the neogenesis of biological material. More than 40 000 species of oligocellular algae constitute a unique biochemical fund in the plant world. As the energy supply to the phototrophic microorganisms is transported via photons and as the physics of light distribution is a technical challenge, the technique of biomass production of single cell algae as against heterotrophic organisms is in a stage of intensive development. In contrast to area intensive open pond technology, space saving closed cultivation systems could be gradually established in the market of industrial photobioreactors. The present review surveys outdoor cultivation systems and indoor photobioreactors with respect to their light utilization and productivity. To evaluation reactor performance independently of their design and location, growth yields were recalculated from published data. It became obvious that closed systems may out-perform raceway ponds by about 300%, which represents productivities over 100 g dry algal biomass per m2 per day. Thus, economic aspects for the cultivation of phototrophs, even in moderate climates, are better satisfied, but microalgal biotechnology is still of minor importance because of high biomass production costs. Considering indoor systems with internal illumination arrangements, the growth potential can be increased by a further 100%. Due to the high technical expenses, this technology will be confined to the production of high value products, e.g. pharmaceuticals. Consequently, very defined axenic cultivitation has to be guaranteed by all means available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller HJ (1984) Ökologie, VEB Fischer Verlag, Jena, Germany (ger)

    Google Scholar 

  2. Böhm H, Pulz O (1991) Phototrophe Mikroorganismen. In: Rutloff H (ed) Lebensmitteltechnologie. Akademie Verlag. Berlin, p 165–1801976, Neuauflage 1991

    Google Scholar 

  3. Graham JM (1991) J Protozool 38: 66

    Google Scholar 

  4. Burlew JS (ed) (1953) In. Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington DC, p 357

    Google Scholar 

  5. Soeder CJ (1986) An historical outline of allied algology. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, Florida, p 25

    Google Scholar 

  6. Richmond A (1983) Phototrophic microalgae. In: Dellweg H (ed) Biotechnology. Verlag Chemie, Deerfield Beach, p 109

    Google Scholar 

  7. Oswald WJ (1988a) Microalgae and waste-water treatment. In: Borowitzka MA Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, p 305

    Google Scholar 

  8. Shelef G, Oswald WJ, McGauhey PH (1970) J of the Sanitary Engineering Division of American Society of Civil Engineers 96: 91

    Google Scholar 

  9. Sogokenkyusho E (1991) Japanese patent 3.022.990

    Google Scholar 

  10. Roe SP (1994) An evaluation of marine biotechnology for atmosphere control in diesel-electric powered submarines. ECB6: Proceedings of the 6th European congress on biotechnology, Florence, p 1125

    Google Scholar 

  11. Bardach JE, Ryther JH, McLarney WO (1972) Aquaculture. The farming and husbundry of freshwater and marine organisms. New York: Wiley Interscience

    Google Scholar 

  12. Borowitzka MA (1992) J Appl Phycol 4:267

    Article  Google Scholar 

  13. Chaumont D (1993) J Appl Phycol 5: 593

    Article  Google Scholar 

  14. Pulz O (1994) presented at the 2nd Asian—Pacific Conference on Biotechnology, Singapore

    Google Scholar 

  15. Oh-Hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, p 3

    Google Scholar 

  16. Benemann JR, Tillet DM, Weisman JC (1987) Trends in Biotechnology 5: 47

    Article  CAS  Google Scholar 

  17. Aiba S (1982) Advances in Biochemical Engineering 23: 85

    CAS  Google Scholar 

  18. Raven J (1988) Limits to growth. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, p 331

    Google Scholar 

  19. Pirt SJ, Lee YK, Richmond A, Pirt MW (1980) J Chem Tech Biotech 30: 25

    CAS  Google Scholar 

  20. Pirt SJ (1983) Biotech Bioeng 25: 1915

    Article  CAS  Google Scholar 

  21. Laws EA, Taguchi S, Hirata J, Pang L (1988) Biomass 16: 19

    Article  Google Scholar 

  22. Oswald WJ (1978) the engineering aspects of microalgae. In: Laskins AI (ed) CRC Handbook of microbiology. CRC Press, Boca Raton, Florida, p 519

    Google Scholar 

  23. Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae. Sharada Press, Mangalore, India

    Google Scholar 

  24. Hall DO, Rao KK (1996) The potential application of cyanobacterial photosynthesis. Abstracts of the 7th International Conf of Applied Algology, Knysna, South Africa, p 40

    Google Scholar 

  25. Scheibe R (1996) Biologie in unserer Zeit 26: 27 (ger)

    Article  CAS  Google Scholar 

  26. Prokop A, Quinn MF, Fekri M, Murad M, Ahmed SA (1984) Biotech Bioeng 26: 1313

    Article  CAS  Google Scholar 

  27. Kubin S, Borns E, Doucha J, Seiss U (1983) Biochem Physiol Pflanzen 178: 193

    CAS  Google Scholar 

  28. Kohl JG, Nicklisch A (1988) Ökophysiologie der Algen. Akademie Verlag, Berlin (ger)

    Google Scholar 

  29. Richardson K, Beardall J, Raven JA (1983) New Phytologist 93: 157

    Article  Google Scholar 

  30. Radwan SS (1988) J Biosciences 43: 15

    CAS  Google Scholar 

  31. Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Marine Biology (Berl) 108: 157

    Article  CAS  Google Scholar 

  32. Kopecky J, Doucha J, Loest K, Pulz O (1996) Algological Studies 81: 53

    Google Scholar 

  33. Lopez-Figueroa F (1991) Z Naturforsch 46c: 542

    Google Scholar 

  34. Grima EM, Camacho FG, Perez JAS, Sevilla JMF, Fernandez FGA, Gomez AC (1994) J Chem Tech Biotech 61: 167

    Article  Google Scholar 

  35. Schuster A (1905) Astrophys J 21: 1

    Article  Google Scholar 

  36. Binois C, Lasseur C, Cornet JF, Doyle D (1994) The Engineering Society for Advancing Mobility Land Sea Air and Space SAE Technical paper series 941411

    Google Scholar 

  37. Simmer J, Tichy V, Doucha J (1994) J Appl Phycol 6: 309

    Article  Google Scholar 

  38. Frohlich BT, Webster IA, Ataai MM, Shuler ML (1983) Biotech Bioeng Symp 13: 331

    CAS  Google Scholar 

  39. Brand LE, Guillard RRL (1981) J Experimental Marine Biology and Ecology 50: 119

    Article  Google Scholar 

  40. Weissman J, Raymond PG, Benemann JR (1988) Biotech Bioeng 31: 336

    Article  CAS  Google Scholar 

  41. Grobbelaar JU (1994) J Appl Phycol 6: 331

    Article  Google Scholar 

  42. Laws EA (1983) Nova Hedwigia H83 supplement

    Google Scholar 

  43. Laws EA, Terry KL, Wickman J, Chalup MS (1983) Biotech Bioeng 25: 2319

    Article  CAS  Google Scholar 

  44. Warburg O (1919) Biochem Z 100: 230 (ger)

    CAS  Google Scholar 

  45. Kok B (1956) Biochem Biophys Acta 21: 254

    Google Scholar 

  46. Terry KL (1986) Biotech Bioeng 28: 988

    Article  CAS  Google Scholar 

  47. Weller S, Franck J (1941) J Phys Chem 45: 1359

    Article  CAS  Google Scholar 

  48. Phillips JN, Myers J (1954) Plant Physiol 29: 152

    CAS  Google Scholar 

  49. Grobbelaar JU, Neddal L (1996) Growth of algae under turbulent conditions and intermitted light. Abstracts of the 7th Internat Conf of Applied Algology, Knysna, South Africa, p 40

    Google Scholar 

  50. Tichy V, Xiong F, Grobbelaar JU, Neori A, Nebdal L (1996) Algae in intermitted light. Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 69

    Google Scholar 

  51. Sager JC, Giger W (1980) Agricult Meteorol 22: 289

    Article  Google Scholar 

  52. Rabinowitch EI (1956) Photosynthesis and related Processes. vol 2, part 2, Interscience, NY

    Google Scholar 

  53. Schädlich HK (1993) Chem Ing Tech 65: 1482 (ger)

    Article  Google Scholar 

  54. Beale SI, Appleman D (1971) Plant Physiol 47: 230

    CAS  Google Scholar 

  55. Herron HA, Mauzerall D (1972) Plant Physiology 50: 141

    CAS  Google Scholar 

  56. Sukenik A, Falkowski PG, Bennet J (1987) Biotech Bioeng 30: 970

    Article  CAS  Google Scholar 

  57. Ben-Amotz A (1983) Nova Hedwigia 83 supplement: 132

    Google Scholar 

  58. Falkowski PG (1984) Photosynthetica 18: 62

    Google Scholar 

  59. Pulz O (1992) Cultivation techniques for microalgae in open and closed ponds. Proceedings of the 1st European workshop on microalgal biotech, Potsdam-Rehbrücke, Germany, p 61

    Google Scholar 

  60. Karube I, Takeuchi T, Barnes DJ (1992) Adv Biochem Eng Biotech 46: 64

    Google Scholar 

  61. Semenenko VE, Gabel BV, Tsoglin LN (1992) Closed type photobioreactor. Proceedings of the 1st European workshop on microalgal biotech, Potsdam-Rehbrücke, Germany, p 67

    Google Scholar 

  62. International Light Corp. (1995) An overview of Flashlamps and CW Arc Lamps Technical Bulletin No. 3, TLC Technology, Sunnyvale, CA, USA

    Google Scholar 

  63. Javanmardian M, Palsson BO (1991) Biotech Bioeng 38: 1182

    Article  CAS  Google Scholar 

  64. Lee CG, Palsson BO (1994) Biotech Bioeng 44: 1161

    Article  CAS  Google Scholar 

  65. Fusion Lighting Inc. (1996) Product preview, Rockwell, Maryland, USA

    Google Scholar 

  66. Kirk JTO (1994) Light & Photosynthesis in Aquatic Ecosystems. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  67. Fogg GE (1991) New Phytol 118: 191

    Article  Google Scholar 

  68. Grobbelaar JU, Soeder CJ, Stengel E (1990) Biomass 21: 297

    Article  Google Scholar 

  69. Borowitzka MA, Borowitka LJ (1988) Microalgal Biotechnology. Cambridge University Press

    Google Scholar 

  70. Canell RJ (1990) Appl Biochem Biotechnol 26: 85

    Google Scholar 

  71. Becker EW (1994) Microalgae. Cambridge University Press

    Google Scholar 

  72. Benemann JR (1989) Microalgal Biotechnology: Products, Processes and Opportunities. OMEC, Intern Inc

    Google Scholar 

  73. Richmond A, Vonshak A (1991) Preface of Bioresource Technol 38: 83

    Article  Google Scholar 

  74. Richmond A (1990) Large scale microalgal culture and applications. In: Round FE, Chapman DJ (eds) Progress in physiological research. vol 7, Biopress, Bristol

    Google Scholar 

  75. Lee YK (1986) Trend Biotechnol 4: 186

    Article  CAS  Google Scholar 

  76. Brouers M, Dejong H, Shi DJ, Hall DO (1989) Immobilized cells. In. Cresswell RC et al. (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, NY, p 272

    Google Scholar 

  77. Borowitzka LJ (1991) Bioresource Technol 38: 251

    Article  Google Scholar 

  78. Dujardin E, Sironval C, Bombart P, Brouers M (1992) Controlled algae cultures at Liege. Proceedings of the 1st European workshop on microalgal biotechnology, Potsdam-Rehbrücke, Germany, p 87

    Google Scholar 

  79. Gudin C, Chaumont D (1991) Bioresource Technol 38: 145

    Article  Google Scholar 

  80. Tredici MR, Materassi R (1992) J Appl Phycol 4: 221–231

    Article  Google Scholar 

  81. Becker EW (1981) Process Biochem 8/9: 10

    Google Scholar 

  82. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) J Appl Phycol 5: 327

    Article  Google Scholar 

  83. Setlik I, Sust V, Malek I (1970) Algol Stud (Trebon) 1: 111

    Google Scholar 

  84. Fournadzhieva S, Pillarsky P (1993) Mass Culture and Application of Algae in Bulgaria. Abstract books of the 6th international conference on applied algology, Czech Republic, p 20

    Google Scholar 

  85. Heussler P, Castillo J, Morino S, Vasquez V (1978) Arch Hydrobiol 11: 254

    Google Scholar 

  86. Soeder CJ (1978) Archiv für Mikrobiologie 11: 259

    Google Scholar 

  87. Gudin C, Chaumont D (1983) Solar biotechnology study. In: Palz W, Pirrwitz D (eds) Proceedings of the workshop and E C contractor's meeting in Capri, D Reidel, Dordrecht, p 184

    Google Scholar 

  88. Chaumont D, Thepenier C, Gudin C (1988) Scalling up tubular photoreactors. In: Stadler T et al. (eds) Algal biotechnology, Elsevier, London, p 199

    Google Scholar 

  89. Chaumont D, Ferreira dos Santos P, Gudin C, Chaintron G, Assice D (1991) French patent 9.115.735

    Google Scholar 

  90. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Biomass 11: 61

    Article  Google Scholar 

  91. Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) Biotech Bioeng 42: 891

    Article  CAS  Google Scholar 

  92. Carlozzi P, Torzillo G (1996) Appl Microbiol Biotechnol 45: 18

    Article  CAS  Google Scholar 

  93. Zitelli G, Tomasello V, Tredici MR (1996) One-year cultivation of Athrospira. Abstracts of the 7th International Conference of Applied Algology, Knysna, South Africa, p 84

    Google Scholar 

  94. Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) J Appl Phycol 7: 47

    Article  CAS  Google Scholar 

  95. Dvorin SA (1992) A factory of commercial cultivation of microalgae. Proceedings of the 1st European workshop on microalgal biotechnology, Potsdam-Rehbrücke, Germany, p 91

    Google Scholar 

  96. Seitgeldiyev N (1992) Industrial photoreactors for producing Chlorella. Proceedings of the 1st European workshop on microalgal biotech, Potsdam-Rehbrücke, Germany, p 105

    Google Scholar 

  97. Seitgeldiyev N, Akyev AY (1995) A strategy for gas supply at large scale production. Proceedings of the 2nd European workshop on microalgal biotechnology, Bergholz-Rehbrücke, Germany, p 25

    Google Scholar 

  98. Tredici MR, Chini Zitelli G (1995) Scale-up of photoreactors to commerical size. Proceedings of the 2nd European workshop on microalgal biotech, Bergholz-Rehbrücke, Germany, p 21

    Google Scholar 

  99. Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) J Chem Tech Biotech 33B: 35

    CAS  Google Scholar 

  100. Robinson LF (1987) European patent 0.239.272

    Google Scholar 

  101. Chrismadha T, Borowitzka MA (1994) Growth and lipid production of Phaeodactylum. In: Phang SM et al. (eds) Algal biotechnology in the asia-pacific region—conference proceedings 1992, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, p 122

    Google Scholar 

  102. Borowitzka MA (1996) Tubular photobioreactors. Abstracts of the 7th International Conference of Applied Algology, Knysna, South Africa, p 25

    Google Scholar 

  103. Watanabe Y, Delanoue J, Hall DO (1995) Biotech Bioeng 47: 261

    Article  CAS  Google Scholar 

  104. Borowitzka MA (1996) personal communnication

    Google Scholar 

  105. Anderson DB, Eakin DE (1985) Biotech Bioeng 15: 533

    Google Scholar 

  106. James CM, Al-Kahrs AM (1990) Acquaculture 87: 381

    Article  CAS  Google Scholar 

  107. Myers J, Graham J (1961) Plant Physiol 36: 342

    CAS  Google Scholar 

  108. Miyamato K, Wable O, Benemann JR (1988) Biotechnology letters 10: 703

    Article  Google Scholar 

  109. Jüttner F (1977) Biotech Bioeng 19: 1679

    Article  Google Scholar 

  110. Trotta P (1981) Aquaculture 22: 383

    Article  Google Scholar 

  111. Samson R, Leduy A (1985) Canadian J Chem Eng 63: 105

    CAS  Google Scholar 

  112. Ramos de Orterga A, Roux JC, Fourcy A (1984) Cultures intensives de chlorelles sous rayonnement solaire. 2eme colloque de l'Assoc Franc pour l'algol appl, chateau de Fontager

    Google Scholar 

  113. Fallowfield HJ (1991) UK patent 2.235.210 A

    Google Scholar 

  114. Richmond A (1996) Photobioreactor design. Abstracts of the 7th International Conference of Applied Algology, Knysna, South Africa, p 60

    Google Scholar 

  115. Pulz O, Gerbsch N, Buchholz R (1995) J Appl Phycol 7: 145

    Article  Google Scholar 

  116. Pulz O, Broneske J (1995) Layer thickness in photoreactor design. Proceedings of the 2nd European workshop on microalgal biotechnology, Bergholz-Rehbrücke, Germany, p 38

    Google Scholar 

  117. Tredici M, Biagiolini S, Chini Zitelli G, Montaini E, Favilli F, Mannelli D, Materassi R (1994) Fully-controllable photobioreactors. ECB6: Proceedings of the 6th European congress on biotechnology, Florence, p 1011

    Google Scholar 

  118. Doucha J, Livansky K, Kostelnik K (1996) Thin-layer microalgal culture technology. Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 32

    Google Scholar 

  119. Lee ETY, Bazin MJ (1990) New Phytol 116: 331

    Article  Google Scholar 

  120. Watanabe Y, Hall DO (1996) Appl Microbiol Biotechnol 44: 693

    CAS  Google Scholar 

  121. Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1996) Outdoor chemostar productivity analysis. Abstracts of the 7th International Conference of Applied Algology, Knysna, South Africa, p 39

    Google Scholar 

  122. Scheibenbogen K, Peine G, Pulz O (1995) Influence of different light input parameter. Proceedings of the 2nd European workshop on microalgal biotech, Bergholz-Rehbrücke, Germany, p 27

    Google Scholar 

  123. Pohl P, Kohlhase M, Martin M (1986) Planta Medica 52: 416

    CAS  Google Scholar 

  124. Pohl P, Gehrmann C, Hoffmann M, Poluljach O (1992) Axenic mass cultivation. Proceedings of the 1st European workshop on microalgal biotechnology, Potsdam-Rehbrücke, Germany, p 73

    Google Scholar 

  125. Böhm H (1978) GDR patent DD-PS 133.248

    Google Scholar 

  126. Schulze S, Stahl W (1994) BioEngineering 10: 28 (ger)

    CAS  Google Scholar 

  127. Lee CG, Palsson PO (1995) J Ferment Bioeng 79: 275

    Google Scholar 

  128. Matthijs HCP, Balke H, Vanhes UM, Kroon BMA, Mur LR, Binot RA (1996) Biotech Bioeng 50: 98

    Article  CAS  Google Scholar 

  129. Meyer M, Levert JM, Vanthournh M (1990) World patent 9.015.953

    Google Scholar 

  130. Mori K (1986) Biotech Bioeng Symp 15: 331

    CAS  Google Scholar 

  131. Hirata S, Hayashitani M, Taya M, Tone S (1996) J Ferment Bioeng 81: 470

    Article  CAS  Google Scholar 

  132. Eriksen NT, Poulsen BR, Iversen IJL, Geest T (1996) On-line optimisation of light intensity. Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 32

    Google Scholar 

  133. Matsunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N (1991) Appl Biochem Biotechnol 28/29: 157

    Article  Google Scholar 

  134. Takano H, Takeyama H, Nakamura N, Sode K, Burgess JG, Manabe E, Hirano M, Matsunaga T (1992) Appl Biochem Biotechnol 34/35: 449

    Google Scholar 

  135. Yamamura K (1993) Development of photosynthetic bioreactor. BIOTECHNICA, Hannover, conference abstract no 5

    Google Scholar 

  136. Burgess JG, Iwamoto K, Miura Y, Takano H, Matsunaga T (1993) Appl Microbiol Biotechnol 39: 456

    Article  CAS  Google Scholar 

  137. Buchholz R, Gerbsch N (1995) New developments for microalgae cultivation. Proceedings of the 2nd European workshop on microalgal biotech, Bergholz-Rehbrücke, Germany, p 17

    Google Scholar 

  138. Robinson PK, Mak AL, Trevan MD (1986) Process Biochem 21: 122

    CAS  Google Scholar 

  139. Hall DO, Garbisu C, Kannaiyan S, Lichtl R, Markov S, Rao KK, Serra JL, Sopko B (1993) Photobioreactors with immobilized cyanobacteria for production of fuels and chemicals. Abstract books of the 6th internat conference on applied algology, Czech Republic, p S5/1

    Google Scholar 

  140. Wang SC, Jin MR, Hall DO (1991) Bioresource Technol 38: 85

    Article  CAS  Google Scholar 

  141. Markov SA, Bazin MJ, Hall DO (1995) Enzyme Microbial Technol 17: 306

    Article  CAS  Google Scholar 

  142. Mignot L, Junter GA, Labbe M (1989) Biotechnol Techniques 3: 299

    Article  Google Scholar 

  143. Tramm-Werner S, Weng M, Hartmeier W, Modigell M (1996) Photobiological hydrogen production, pres at the 9th Europ bioenergy conf, Copenhagen (submitted for publication)

    Google Scholar 

  144. Miyake J (1994) Photosynthetic bacteria for solar energy conversion. ECB6: Proceedings of the 6th European congress on biotechnology, Florence, p 1019

    Google Scholar 

  145. Rechenberg I (1994) Photobiologische Wasserstoffproduktion in der Sahara. Werkstatt Bionik und Evolutionstechnik, vol 2. Frommann-Holzboog, Stuttgart (ger)

    Google Scholar 

  146. Phol P, Schlösser UG, Fischer D (1996) Exopolysaccaride production by cyanobacteria. Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 57

    Google Scholar 

  147. Silva HJ, Cortimas T, Ertola RJ (1987) J Chem Tech Biotech 40: 41

    Article  Google Scholar 

  148. Märkl H, Zenneck C, Wilderer PA (1991) Wasser Abwasser 132: 414 (ger)

    Google Scholar 

  149. Jehle W, Staneff T, Steinwandel J, Wagner B (1994) The Engineering Society for Advancing Mobility Land Sea Air and Space SAE Technical paper series 941339

    Google Scholar 

  150. Reitzig W, Helmdach M, Broneske J, Pulz O (1995) Bioregenerative life-support systems. Proceedings of the 2nd European workshop on microalgal biotechnology, Bergholz-Rehbrücke, Germany, p 97

    Google Scholar 

  151. Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) Biomass 15: 211

    Article  Google Scholar 

  152. Vonshak A, Abeliovich A, Boussiba S, Richmond A (1982) Biomass 2: 175

    Article  Google Scholar 

  153. Tredici MR, Zitelli GC, Biagioliniu S (1992) Influence of areal density. Proceedings of the 1st European workshop on microalgal biotechnology, Potsdam-Rehbrücke, Germany, p 58

    Google Scholar 

  154. Richmond A, Grobbelaar JU (1986) Biomass 10: 253

    Article  Google Scholar 

  155. Lee YK (1996) Could moxotrophic growth be the best mode for outdoor micoalgal cultures? Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 46

    Google Scholar 

  156. Ogawa T, Aiwa S (1981) Biotech Bioeng 23: 1121

    Article  CAS  Google Scholar 

  157. Yokoi H, Koga J, Yamamura K, Seike Y, Tanaka H (1993) J Ferment Bioeng 75: 48

    Article  CAS  Google Scholar 

  158. Johns MR (1994) Heterotrophic culture of microalgae. In: Phang SM et al. (eds) Algal biotechnology in the asia-pacific region—conference proceedings 1992, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, p 150

    Google Scholar 

  159. Droop MR (1974) Heterotrophy of carbon In: Steward WPD (ed) Algal physiology and biochemistry. Blackwell, London, p 503

    Google Scholar 

  160. Chung P, Pond WC, Kingsburg JM, Walker EF, Krook L (1978) J Animal Science 47: 319

    CAS  Google Scholar 

  161. Adler PR (1996) Fermentation byproducts from organic wastes as carbon source for heterotrophic algae. Abstracts of the 7th Internat Conference of Applied Algology, Knysna, South Africa, p 19

    Google Scholar 

  162. Moi Phang S, Jeyaratnam S, Hashim MA (1996) Effect of carbon dioxide supplementation on Chlorella production in a high rate algal pond treating rubber effluent. Abstracts of the 7th International Conference of Applied Algology, Knysna, South Africa, p 56

    Google Scholar 

  163. Tsygankov AA, Laurinavichene TV, Bugatin VE, Gogotov IN, Hall DO (1995) Comparison of different photobioreactors in biomass production. Proceedings of the 2nd European workshop on microalgal biotechnology, Bergholz-Rehbrücke, Germany, p 48

    Google Scholar 

  164. Lee YK, Low CS (1994) The productivities of outdoor algal cultures. In: Phang SM et al. (eds) Algal biotechnology in the Asia-Pacific region—conference proceedings 1992, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, p 150

    Google Scholar 

  165. Oswald WJ (1988b) Large-scale algal culture systems. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, p 357

    Google Scholar 

  166. Mitscherlich EA (1909) Landwirtschaftliches Jahrbuch 38: 537 (ger)

    CAS  Google Scholar 

  167. Baly ECC (1935) Proc Roy Soc London Ser B117: 218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pulz, O., Scheibenbogen, K. (1998). Photobioreactors: Design and performance with respect to light energy input. In: Bioprocess and Algae Reactor Technology, Apoptosis. Advances in Biochemical Engineering Biotechnology, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102298

Download citation

  • DOI: https://doi.org/10.1007/BFb0102298

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63417-1

  • Online ISBN: 978-3-540-69541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics