Skip to main content

Lie bialgebras, poisson Lie groups and dressing transformations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 495))

Abstract

In this course, we present an elementary introduction, including the proofs of the main theorems, to the theory of Lie bialgebras and Poisson Lie groups and its applications to the theory of integrable systems. We discuss r-matrices, the classical and modified Yang-Baxter equations, and the tensor notation. We study the dual and double of Poisson Lie groups, and the infinitesimal and global dressing transformations.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography Background on Manifolds, Lie Algebras and Lie Groups, and Hamiltonian Systems

  1. R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag 1988.

    Google Scholar 

  2. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag 1989 (in Russian, Nauka, Moscow 1974; French translation, Editions Mir, Moscou 1976).

    Google Scholar 

  3. O. Barut and R. Raçzka, Theory of Group Representations and Applications, 2nd ed., World Scientific 1986.

    Google Scholar 

  4. J. G. F. Belinfante and B. Kolman, A Survey of Lie Groups and Lie Algebras with Aplications and Computational Methods, 3rd ed., SIAM Philadelphia 1992.

    Google Scholar 

  5. Y. Choquet-Bruhat, C. de Witt-Morette, M. Dillard-Bleick, Analysis, Manifolds and Physics, Part I (1982), Part II (1989), North-Holland.

    Google Scholar 

  6. W. D. Curtis and F. R. Miller, Differential Manifolds and Theoretical Physics, Academic Press 1985.

    Google Scholar 

  7. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press 1984.

    Google Scholar 

  8. A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag 1975 (in Russian, Nauka, Moscow 1971; French translation, Editions Mir, Moscou 1974).

    Google Scholar 

  9. B. Kostant, The solution to the generalized Toda lattice and representation theory, Adv. Math. 34, 195–338 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras, Ann. Phys. (N.Y.) 176, 49–113 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78, 1–63 (1950).

    MathSciNet  Google Scholar 

  12. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag 1994.

    Google Scholar 

  13. M. Postnikov, Lectures in Geometry, Semester V, Lie Goups and Lie Algebras, Mir, Moscow (1986) (in Russian, Nauka, Moscow 1982; French translation, Editions Mir, Moscou 1985).

    Google Scholar 

  14. D. H. Sattinger and O. L. Sattinger, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, Springer-Verlag 1986.

    Google Scholar 

A. Fundamental Articles on Poisson Lie Groups

  1. V. G. Drinfeld, Hamiltonian Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation, Sov. Math. Dokl. 27, no 1, 68–71 (1983).

    MathSciNet  Google Scholar 

  2. V. G. Drinfeld, Quantum groups, in Proc. Intern. Cong. Math. Berkeley 1986, vol. 1, Amer. Math. Soc. (1987), pp. 798–820.

    Google Scholar 

  3. I. M. Gelfand and I. Ya. Dorfman, Hamiltonian operators and the classical Yang-Baxter equation, Funct. Anal. Appl. 16, no 4, 241–248 (1982).

    Article  MathSciNet  Google Scholar 

  4. M. A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl. 17, no 4, 259–272 (1983).

    Article  Google Scholar 

  5. M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. RIMS (Kyoto) 21, 1237–1260 (1985).

    Article  MathSciNet  Google Scholar 

B. Books and Lectures on Poisson Manifolds, Lie Bialgebras, r-Matrices and Poisson Lie Groups

  1. O. Babelon and C.-M. Viallet, Integrable Models, Yang-Baxter equation and quantum groups, SISSA Lecture Notes, 54 EP (1989).

    Google Scholar 

  2. P. Cartier, Some fundamental techniques in the theory of integrable systems, in Lectures on Integrable Systems, In Memory of J.-L. Verdier, Proc. of the CIMPA School on Integrable Systems, Nice (France) 1991, O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, eds., World Scientific 1994, pp. 1–41. (Introduction to symplectic and Poisson geometry).

    Google Scholar 

  3. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press 1994. (Chapters 1, 2, 3 and Appendix on simple Lie algebras)

    Google Scholar 

  4. L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag 1987.

    Google Scholar 

  5. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press 1995. (Chapter 8).

    Google Scholar 

  6. A. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser 1990.

    Google Scholar 

  7. A. G. Reyman, Poisson structures related to quantum groups, in Quantum Groups and their Applications in Physics, Intern. School “Enrico Fermi” (Varenna 1994), L. Castellani and J. Wess, eds., IOS, Amsterdam 1996, pp. 407–443.

    Google Scholar 

  8. A. Reyman and M. A. Semenov-Tian-Shansky, Group-theoretical methods in the theory of finite-dimensional integrable systems, in Dynamical Systems VII, V. I. Arnold and S. P. Novikov, eds., Springer-Verlag 1994 (Encycl. of Mathematical Sciences, vol. 16), pp. 116–225.

    Google Scholar 

  9. M. A. Semenov-Tian-Shansky, Lectures on R-matrices, Poisson-Lie groups and integrable systems, in Lectures on Integrable Systems, In Memory of J.-L. Verdier, Proc. of the CIMPA School on Integrable Systems, Nice (France) 1991, O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, eds., World Scientific 1994, pp. 269–317. (Lectures on group-theoretical methods for integrable systems, Lie algebras, r-matrices, Poisson Lie groups).

    Google Scholar 

  10. L. A. Takhtajan, Elementary course on quantum groups, in Lectures on Integrable Systems, In Memory of J.-L. Verdier, Proc. of the CIMPA School on Integrable Systems, Nice (France) 1991, O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, eds., World Scientific 1994, pp. 319–347. (Introduction to Poisson Lie groups and quantum groups).

    Google Scholar 

  11. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser 1994.

    Google Scholar 

  12. J.-L. Verdier, Groupes quantiques, d'après V. G. Drinfel'd, Séminaire Bourbaki, exposé 685, Astérisque 152–153, Soc. Math. Fr. 1987, pp. 305–319.

    MathSciNet  Google Scholar 

C. Further Developments on Lie Bialgebras, r-Matrices and Poisson Lie Groups

  1. A. Yu. Alekseev and A. Z. Malkin, Symplectic structures associated to Poisson-Lie groups, Comm. Math. Phys. 162, 147–173 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. R. Aminou et Y. Kosmann-Schwarzbach, Bigèbres de Lie, doubles et carrés, Ann. Inst. Henri Poincaré, Phys. Théor., 49A, no 4, 461–478 (1988).

    MathSciNet  Google Scholar 

  3. O. Babelon and D. Bernard, Dressing symmetries, Comm. Math. Phys. 149, 279–306 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. O. Babelon and C.-M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett B 237, 411–416 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Bangoura and Y. Kosmann-Schwarzbach, The double of a Jacobian quasi-bialgebra, Lett. Math. Phys. 28, 13–29 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. P. Dazord and D. Sondaz, Groupes de Poisson affines, in Symplectic Geometry, Groupoids and Integrable Systems, P. Dazord and A. Weinstein, eds., Springer-Verlag 1991, pp. 99–128.

    Google Scholar 

  7. Y. Kosmann-Schwarzbach, Poisson-Drinfeld groups, in Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, M. Ablowitz, B. Fuchssteiner and M. Kruskal, eds., World Scientific 1987, pp. 191–215.

    Google Scholar 

  8. Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemporary Mathematics 132, 459–489 (1992).

    MathSciNet  Google Scholar 

  9. Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability, I. Drinfeld bigebras, dual extensions and their canonical representations, Ann. Inst. Henri Poincaré, Phys. Théor., 49A, no4, 433–460 (1988).

    MathSciNet  Google Scholar 

  10. Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, Phys. Théor., 53A, no1, 35–81 (1990).

    MathSciNet  Google Scholar 

  11. P. Lecomte and C. Roger, Modules et cohomologie des bigèbres de Lie, Comptes rendus Acad. Sci. Paris 310, série I, 405–410 and 311, série I, 893–894 (1990).

    MATH  MathSciNet  Google Scholar 

  12. L. C. Li and S. Parmentier, Nonlinear Poisson structures and r-matrices, Comm. Math. Phys. 125, 546–563 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. H. Lu, Momentum mappings and reduction of Poisson actions, in Symplectic Geometry, Groupoids and Integrable Systems, P. Dazord and A. Weinstein, eds., Springer-Verlag 1991, pp. 209–226.

    Google Scholar 

  14. J. H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31, 501–526 (1990).

    MATH  MathSciNet  Google Scholar 

  15. S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pacific J. Math. 141, 311–319 (1990).

    MATH  MathSciNet  Google Scholar 

  16. N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Quantum Rmatrices and factorization problems, J. Geom. Phys. 5, 533–550 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. C. Roger, Algèbres de Lie graduées et quantification, in Symplectic Geometry and Mathematical Physics, P. Donato et al., eds., Birkhäuser 1991, pp. 374–421.

    Google Scholar 

  18. Ya. Soibelman, On some problems in the theory of quantum groups, Advances in Soviet Mathematics 9, 3–55 (1992).

    MathSciNet  Google Scholar 

  19. A. Weinstein, Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo IA, 35, no1, 163–167 (1988).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Y. Kosmann-Schwarzbach B. Grammaticos K. M. Tamizhmani

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Kosmann-Schwarzbach, Y. (1997). Lie bialgebras, poisson Lie groups and dressing transformations. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds) Integrability of Nonlinear Systems. Lecture Notes in Physics, vol 495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113695

Download citation

  • DOI: https://doi.org/10.1007/BFb0113695

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63353-2

  • Online ISBN: 978-3-540-69521-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics