Skip to main content
Log in

Morphology of oxide scales formed on titanium

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High-temperature oxidation of several pure metals and their alloys gives rise to multilayered corrosion scales. This curious morphology has not been the subject of a specific investigation, and its interpretation remains widely open. This paper presents results on titanium foil oxidized in pure oxygen leading to this phenomenon. It analyzes the significant features of the stratification as a function of the main parameters of the reaction kinetics such as temperature, oxygen pressure, oxidation time, and initial thickness of the metallic foil. All the results, including those previously reported, show the importance and the consistency of the studied phenomenon as well as the incapability of providing an unequivocal intepretation at the present time. The analysis of the main results, such as the appearance of a macroscopic order, the existence of boundary limits, and the nonequilibrium state of the structure, shows that a consistent set of data exists to give a meaningful interpretation of multilayered corrosion scales in terms of a nonlinear, far-from-equilibrium organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Jenkins,J. Inst. Met. 82, 213 (1953–54).

    Google Scholar 

  2. P. Kofstad, K. Hauffe, and H. Kjöllesdal,Acta. Chem. Scand. 12, 239 (1958).

    Google Scholar 

  3. G. R. Wallwork and A. E. Jenkins,J. Electrochem. Soc. 106, 10 (1959).

    Google Scholar 

  4. J. Stringer,Acta Met. 8, 758 (1960).

    Google Scholar 

  5. T. Hurlen,J. Inst. Met. 89, 128 (1960–61).

    Google Scholar 

  6. E. A. Garcia, X. Lucas, G. Beranger, and P. Lacombe,C.R. Acad. Sci. Paris, Série C,278, 827 (1974).

    Google Scholar 

  7. E. A. Garcia;Met. Corros. Ind. 638, 319 (1978);639-640, 355 (1978).

    Google Scholar 

  8. R. Feldman, M. Dechamps, and P. Lehr,Met. Corros. Ind. 617, 1 (1977);619, 105 (1977);620, 140 (1977).

    Google Scholar 

  9. M. Feldman and P. Lehr,J. Less-Common Metals,56, 193 (1977).

    Google Scholar 

  10. C. Coddet, doctoral thesis, I.N.P. Grenoble (1977).

    Google Scholar 

  11. P. Lefort, J. Desmaison, and M. Billy,C.R. Acad. Sci. Paris, Série C,286, 361 (1978).

    Google Scholar 

  12. P. Sarrazin and C. Coddet,Corros. Sci. 14, 83 (1974); C.'Coddet, P. Sarrazin, and J. Besson,J. Less-Common Met. 51, 1 (1977).

    Google Scholar 

  13. R. F. Voitovich, E. I. Golovko, and L. V. D'Yakonova,Zash. Met. 12, 590 (1976).

    Google Scholar 

  14. H. Becker,Z. Metallkde. 72, 679 (1981).

    Google Scholar 

  15. P. Lefort, J. Desmaison, and M. Billy,C.R. Acad. Sci. Paris, Série C,285, 361 (1977).

    Google Scholar 

  16. P. Lefort, J. Desmaison, and M. Billy,J. Less-Common Met. 60, 11 (1978).

    Google Scholar 

  17. J. Desmaison, P. Lefort, and M. Billy,Oxid. Met. 13, 203 (1979).

    Google Scholar 

  18. P. Sarrazin, F. Motte, J. Besson, and C. Coddet,J. Less-Common Met. 59, 111 (1978).

    Google Scholar 

  19. M. Desmaison, doctoral thesis, Limoges (1981).

  20. R. F. Voitovich, E. I. Golovko, and L. V. D'Yakonova,Russ. J. Phys. Chem. 49, 683 (1975).

    Google Scholar 

  21. J. Stringer,J. Less-Common Met. 16, 55 (1968).

    Google Scholar 

  22. J. A. Roberson and R. A. Rapp,Trans. TMS-AIME,239, 1327 (1967).

    Google Scholar 

  23. Y. Morel, J. P. Larpin, and M. Lambertin,Ann. Chim. Fr. 4, 25 (1979).

    Google Scholar 

  24. J. Lions, J. P. Trottier, and M. Foucalt,Mém. Et. Sci., Rev. Metall., 743 (1980).

  25. R. A. Rapp,Acta Met. 9, 730 (1961).

    Google Scholar 

  26. Y. S. Shen, E. J. Zdanuk, and R. H. Krock,Met. Trans. 2, 2839 (1971).

    Google Scholar 

  27. V. A. Van Rooijen, E. W. Van Royen, J. Vrijen, and S. Radelaar,Acta Met. 23, 987 (1975).

    Google Scholar 

  28. P. Glansdorff and I. Prigogine,Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1974); G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  29. G. Bertrand, J. M. Chaix, and J. P. Larpin,Mat. Res. Bull. 17, 69 (1982).

    Google Scholar 

  30. C. Béranger and C. Coddet,J. Microscop. Spectrosc. Electron. 5, 793 (1980).

    Google Scholar 

  31. F. R. A. Jorgensen and F. J. Moyle,Met. Trans. B,12B, 769 (1981).

    Google Scholar 

  32. P. Kofstad, P. B. Anderson, and O. J. Krudtaa,J. Less-Common Met. 3, 89 (1961).

    Google Scholar 

  33. C. Coddet, J. F. Chretien, and C. Beranger,C.R. Acad. Sci., Paris, Série C,282, 815 (1976).

    Google Scholar 

  34. G. Romeo, W. W. Smeltzer, and J. S. Kirkaldy,Chim. l'Industria,54, 28 (1972);J. Electrochem. Soc. 118, 1336 (1971); B. D. Lichter and C. Wagner,J. Electrochem. Soc. 107, 168 (1960); J. S. Kirkaldy, G. M. Bolze, C. Mccutcheow, and D. J. Young,Met. Trans. 4, 1519 (1973); J. Benard,L'Oxydation des Métaux (Gauthier Villars, Paris, 1962); G. J. Yurek, J. P. Hirth, and R. A. Rapp,Oxid. Met. 8, 265 (1974); A. T. Fromhold Jr.,J. Chem. Phys. 74, 6525 (1981).

    Google Scholar 

  35. J. M. Chaix, M. Hennenberg, and G. Bertrand,J. Chim. Phys. 79, 781, 791 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, G., Jarraya, K. & Chaix, J.M. Morphology of oxide scales formed on titanium. Oxid Met 21, 1–19 (1984). https://doi.org/10.1007/BF00659464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659464

Key words

Navigation