Skip to main content
Log in

On a proposal for a continuum with microstructure

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A recently proposed model for a continuum with microstructure is further substantiated by identifying the microstructure with dislocations. In particular, the continuum is viewed as a superimposed state composed of a perfect lattice state, an immobile dislocation state, and a mobile dislocation state. It is assumed that each state evolves continuously in space-time and transitions from one state to another take place spontaneously according to the balance laws of effective mass and momentum. When the constitutive equations are subjected to the requirements of invariance, familiar statements from dislocation dynamics are deduced. When plastic strain and yield are identified in terms of the parameters characterizing the dislocation states, familiar flow rules and yield surfaces are produced. The capability of the model to predict not only Tresca and Von-Mises plastic behavior but also phenomena such as kinematic hardening, different responses in tension and compression, latent hardening, and the Bauschinger effect, is shown. Finally, the appropriateness of our equations to model creep, cyclic plasticity, and fatigue, is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E. C.: A proposal for a continuum with microstructure. Mech. Res. Comm.5, 139–145 (1978).

    Google Scholar 

  2. Aifantis, E. C.: Preliminaries on degradation and chemomechanics. In: Proc. NSF Workshop on a continuum mechanics approach to life and damage prediction (Stouffer, D. C., Krempl, E., Fitzgerald, J. E., eds.), pp. 159–173, Carrolton, Kentucky, May 4–7, 1980.

  3. Aifantis, E. C.: Elementary physicochemical degradation processes (Invited). In: Proc. Int. Symp. on mechanical behavior of structured media, pp. 301–317, Carleton University, Ontario, Canada, May 18–21, 1981.

    Google Scholar 

  4. Read, W. T., Jr.: Dislocations in crystals. New York: McGraw-Hill 1953.

    Google Scholar 

  5. Nabarro, F. R. N.: Theory of crystal dislocations. Oxford: Clarendon Press 1967.

    Google Scholar 

  6. Stein, D. L., Low, J. R.: Mobility of edge dislocations in silicon-iron crystals. J. Appl. Phys.31, 362–369 (1960).

    Google Scholar 

  7. Gillis, P. P., Gilman, J. J.: Dynamical dislocation theory of crystal plasticity. J. Appl. Phys.36, 3370–3380 (1965).

    Google Scholar 

  8. Kelly, J. M., Gillis, P. P.: The influence of a limiting dislocation flux on the mechanical response of polycrystalline metals. Int. J. of Solids and Structures10, 45–59 (1974).

    Google Scholar 

  9. Conrad, H., Weidersich, H.: Activation energy for deformation of metals at low temperatures. Acta Met.8, 128–130 (1960).

    Google Scholar 

  10. Li, J. C. M.: Kinetics and dynamics in dislocation plasticity. In: dislocation dynamics (Rosenfield, A. R., Hahn, G. T., Bement, A. L., jr., Jafee, R. I., eds.), pp. 87–116. McGraw-Hill 1968.

  11. Hirth, J. P., Nix, W. D.: An analysis of the thermodynamics of dislocation glide. Phys. Stat. Sol.35, 177–188 (1969).

    Google Scholar 

  12. Kochs, U. F., Argon, A. S., Ashby, M. F.: Progress in materials science, Vol. 19. Oxford: Pergamon Press 1964.

    Google Scholar 

  13. Krausz, A. S., Eyring, H.: Deformation kinetics, New York: Wiley and Sons 1975.

    Google Scholar 

  14. Mecking, H., Lucke, K.: A new aspect of the theory of flow stress and metals. Scripta Metallurgica4, 427–432 (1970).

    Google Scholar 

  15. Gibbs, G. B.: A general dislocation model for high temperature creep. Phil. Mag.23, 771–780 (1971).

    Google Scholar 

  16. Gibbs, G. B.: The thermodynamics of creep deformation. Phys. Stat. Sol.5, 693–696 (1964).

    Google Scholar 

  17. Gibbs, G. B.: The thermodynamics of thermally activated dislocation glide. Phys. Stat. Sol.10, 507–512 (1965).

    Google Scholar 

  18. Weertman, J.: Theory of steady State Creep based on dislocation climb. J. App. Phys.26, 1213–1221 (1955).

    Google Scholar 

  19. Weertman, J.: Dislocation climb theory of steady state creep. Am. Soc. met. Trans. Quart.61, 681–694 (1968).

    Google Scholar 

  20. Weertman, J.: Steady state creep through climb and glide. J. Appl. Phys.28, 362–369 (1957).

    Google Scholar 

  21. Orowan, E.: Problems of plastic gliding. Proc. Phys. Soc. (London)52, 8–21 (1940).

    Google Scholar 

  22. Johnston, W. G., Gilman, J. J.: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Physics30, 129–144 (1959).

    Google Scholar 

  23. Webster, G. A.: A widely applicable dislocation model of creep. Phil. Mag.14, 775–783 (1966).

    Google Scholar 

  24. Webster, G. A.: In support of a model of creep based on dislocation dynamics. Phil. Mag.14, 1303–1307 (1966).

    Google Scholar 

  25. Alexander, H., Haasen, P.: Dislocations and plastic flow in the diamond structure. Solid State Physics, Vol. 22 (Seitz, F., ed.), pp. 27–159 (1968).

  26. Kelly, J. M., Gillis, P. P.: Thermodynamics and dislocation mechanics. J. Franklin Inst.297, 853–862 (1974).

    Google Scholar 

  27. Kelly, J. M., Gillis, P. P.: Continuum descriptions of dislocations under stress reversals. J. of Appl. Phys.45, 1091–1096 (1974).

    Google Scholar 

  28. Sackett, S. J., Kelly, J. M., Gillis, P. P.: A probabilistic approach to polycrystalline plasticity. J. Franklin Inst.304, 33–63 (1977).

    Google Scholar 

  29. Pilecki, S.: Introduction to the diffusional theory of metal fatigue. Third International Conference on Fracture, Munich,1, 241–245 (1973).

    Google Scholar 

  30. Pilecki, S., Analysis of the usefulness of diffusion equations for the description of dislocation mobility and related phenomena. Archives of Mechanics29, 505–517 (1977).

    Google Scholar 

  31. Pilecki, S.: Proliferation, diffusion and vanishing of dislocations in the course of the process of metal fatigue. Bull. de L'Academie Polon. des Sci.17, 489–496 (1969).

    Google Scholar 

  32. Rosenfield, A. R.: A continuous distribution of moving dislocations. Phil. Mag.24, 63–69 (1971).

    Google Scholar 

  33. Nye, J. F.: Some geometrical relations in dislocated crystals. Acta Met.1, 153–162 (1953).

    Google Scholar 

  34. Nye, J. F.: Plastic deformation of silver chloride. II. Photoelastic study of the internal stresses in glide packets. Proc. Roy. Soc.A 200, 47–66 (1949).

    Google Scholar 

  35. Mura, T.: On dynamic problems of continuous distribution of dislocations. Int. J. Eng. Sci.1, 371–381 (1963).

    Google Scholar 

  36. Mura, T.: Continuous distributions of dislocations and the mathematical theory of plasticity. Phys. Stat. Sol.10, 447–453 (1965).

    Google Scholar 

  37. Mura, T.: Continuous distributions of dislocations and the mathematical theory of plasticity (II). Phys. Stat. Sol.11, 683–688 (1965).

    Google Scholar 

  38. Mura, T.: The continuum theory of dislocations. Adv. Mat. Res.3, 1–108 (1968).

    Google Scholar 

  39. Lardner, R. W.: Plane strain plasticity of single crystals. Int. J. Eng. Sci.7, 417–425 (1969).

    Google Scholar 

  40. Lardner, R. W.: Dislocation dynamics and the theory of the plasticity of single crystals. ZAMP20, 514–529 (1969).

    Google Scholar 

  41. Werne, R. W., Kelly, J. M.: A dislocation theory of isotropic polycrystalline plasticity. Int. J. Eng. Sci.16, 951–965 (1978).

    Google Scholar 

  42. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A241, 376–395 (1957).

    Google Scholar 

  43. Kroupa, F.: Continuous distribution of dislocation loops. Czech. J. Phys.B 12, 191–201 (1962).

    Google Scholar 

  44. Kroupa, F.: The interaction between prismatic dislocation loops and straight dislocations. Phil. Mag.1962, 783–801.

  45. Peach, M. O., Koehler, J. S.: The forces exerted on dislocations and the stress fields exerted by them. Phys. Rev.80, 436–439 (1950).

    Google Scholar 

  46. Weertman, J.: The Peach-Koehler equation for the force on a dislocation modified for hydrostatic pressure. Phil. Mag.11, 1217–1223 (1965).

    Google Scholar 

  47. Aifantis, E. C.: On the problems of diffusion in solids. Acta Mech.37, 265–296 (1980).

    Google Scholar 

  48. Aifantis, E. C.: The mechanics of diffusion in solids. TAM Report 440, UILU-ENG 80-6001, University of Illinois, Urbana, Illinois, 1980.

    Google Scholar 

  49. Bammann, D. J., Aifantis, E. C.: Unpublished results.

  50. Bardeen, J., Herring, C.: Diffusion in alloys and the Kirkendall effect, imperfections in nearly perfect crystals (Shockley, W., ed.), pp. 261–288, New York: Wiley 1952.

    Google Scholar 

  51. Bammann, D. J., Aifantis, E. C.: On the perfect lattice-dislocated state interaction. In: Proc. Int. Symp. on Mechanical Behavior of Structured Media, Carleton University, Ontario, Canada, May 18–21, 1981.

  52. Weng, G. J., Phillips, A.: An investigation of yield surface based on dislocation mechanics. Int. J. Eng. Sci.15, 45–59 (1977).

    Google Scholar 

  53. Aifantis, E. C.: Lecture Notes on Dislocations, University of Minnesota, Spring 1981.

  54. Colios, J., Aifantis, E. C.: On the problem of a continuum theory of embrittlement. Res. Mechanica (in press).

  55. Hildebrand, F. B.: Advanced calculus for applications. Englewood Cliffs, N.J.: Prentice-Hall 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bammann, D.J., Aifantis, E.C. On a proposal for a continuum with microstructure. Acta Mechanica 45, 91–121 (1982). https://doi.org/10.1007/BF01295573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01295573

Keywords

Navigation