Skip to main content
Log in

The physical behavior of a gas jet injected horizontally into liquid metal

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The gas fraction and bubble frequency distributions in a submerged air jet, injected horizontally into mercury, have been measured under isothermal, nonreactive conditions for nozzle diameters of 0.325 and 0.476 cm and jet Froude numbers ranging from 20.5 to 288. The measurements reveal that the jets expand extremely rapidly upon discharge from the nozzle with an initial expansion angle of 150 to 155 deg. This value, which is over seven times greater than is found with air jets in water, indicates that the physical properties of the liquid exert considerable influence on the jet behavior. In conjunction with the rapid expansion, the air jets in mercury were also found to penetrate extensively behind the nozzle, and in many respects resembled a vertically injected jet. The extent of backward penetration of the jets was constant for all blowing conditions studied while the forward penetration increased with both increasing jet Froude number and nozzle diameter. The measured jet penetration in both the forward and backward directions were considerably larger than expected from model predictions. The core of the jets consists of a high concentration of gas bubbles. Both the gas volume fraction and bubble frequency in the core increase with increasing jet Froude number and nozzle diameter. The gas concentration and bubble frequency decrease with increasing distance along the jet trajectory due presumably to entrainment of liquid metal and bubble coalescence. On the basis of these findings, it is likely that process jets, such as are injected into copper converters, also expand rapidly and penetrate only a short distance into the bath. Thus rather than reacting in the middle of the bath, the jets may be impinging on the backwall refractory and contributing to the erosion observed there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Klein:J. Metals, 1961, vol. 13, no. 8, pp. 545–57.

    CAS  Google Scholar 

  2. R. Henych, F. Kadlec, and V. Sedlacek:J. Metals, 1965, vol. 17, no. 14, pp. 386–88.

    CAS  Google Scholar 

  3. G. C. McKerrow and D. G. Pannell:Can. Met. Quart, 1972, vol. 11, no. 4, pp. 629–33.

    CAS  Google Scholar 

  4. J. J. Oudiz:J. Metals, 1973, vol. 25, no. 12, pp. 35–38.

    CAS  Google Scholar 

  5. N. J. Themelis, G. C. McKerrow, P. Tarassoff, and G. D. Hallett:J. Metals, 1972, vol. 24, no. 4, pp. 25–32.

    CAS  Google Scholar 

  6. A. Chatterjee:Iron Steel Int., 1973, vol. 46, no. 5, pp. 440–48.

    CAS  Google Scholar 

  7. R. Deily:J. Metals, 1973, vol. 25, no. 3, pp. 33–41.

    Google Scholar 

  8. J. K. Stone:Iron Steel Eng., 1974, vol. 51, no. 3, pp. 62–64.

    Google Scholar 

  9. W. A. Krivsky:Met. Trans., 1973, vol. 4, pp. 1439–47.

    CAS  Google Scholar 

  10. Anon:J. Metals, 1973, vol. 25, no. 10, pp. 30–45.

    Google Scholar 

  11. Anon:Iron Steel Int., 1974, vol. 47, no. 2, pp. 135–57.

    Google Scholar 

  12. R. L. W. Holmes and J. G. Harhai:J. Metals, 1973, vol. 25, no. 6, pp. 22–30.

    CAS  Google Scholar 

  13. W. Meichsner, K. H. Peters, W. Ullrich, and H. Knahl:J. Metals, 1974, vol. 26, no. 4, pp. 55–58.

    CAS  Google Scholar 

  14. I. G. Kazanstev:Stal, 1940, no. 1, pp. 16–18.

  15. L. M. Shalygin and V. B. Meyerovich:Tsvet. Metal., 1960, vol. 33, no. 7, pp. 16–19.

    CAS  Google Scholar 

  16. A. V. Spesivtsev and G. B. Strekalovskii:Izv. Vyssh. Vcheb. Zaved., Tsvet. Met., 1973, vol. 16, no. 6, pp. 101–05.

    Google Scholar 

  17. A. V. Spesivtsev, V. V. Mechev, and A. V. Vanyukov:Tsvet. Metal., 1973, vol. 7, pp. 16–18.

    Google Scholar 

  18. N. J. Themelis and P. R. Schmidt:Trans. TMS-AIME, 1967, vol. 239, pp. 1313–18.

    CAS  Google Scholar 

  19. N.J. Themelis, P. Taiassoff, and J. Szekely:Trans. TMS-AIME, 1967, vol. 245, pp. 2425–33.

    Google Scholar 

  20. V. P. Nemchenko, V. A. Koz’min, S. I. Popel, and L. A. Smirnov:Izv. Vyssh. Ucheb. Zaved. Chem. Met., 1971, vol. 14, no. 10, pp. 41–44.

    CAS  Google Scholar 

  21. B. U. N. Igwe, S. Ramachandran, and J. C. Hilton:Met. Trans., 1973, vol. 4, pp. 1887–94.

    CAS  Google Scholar 

  22. M. Ishibashi:J. Iron Steel Inst. Jap., 1975, vol. 59, p. 111.

    Google Scholar 

  23. A. E. Wraith: pp. 1-14, Inst. Min. Met., London, 1971.

  24. J. K. Brimacombe, E. S. Stratigakos, and P. Tarassoff:Met. Trans., 1974, vol. 5, pp. 763–71.

    Article  CAS  Google Scholar 

  25. L. G. Neal and S. G. Bankoff:AIChEJ., 1963, vol. 9, no. 4, pp. 490–94.

    Article  CAS  Google Scholar 

  26. W. G. Davenport, A. V. Bradshaw, and E D. Richardson:J. Iron Steel Inst., 1967, vol. 205, pp. 1034–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oryall, G.N., Brimacombe, J.K. The physical behavior of a gas jet injected horizontally into liquid metal. Metall Trans B 7, 391–403 (1976). https://doi.org/10.1007/BF02652710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652710

Keywords

Navigation