Skip to main content
Log in

Geometric phase of two-level atoms and thermal nature of de Sitter spacetime

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the framework of open quantum systems, we study the geometric phase acquired by freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar fields in de Sitter-invariant vacuum. We find that, for the freely falling atom, the geometric phase gets a correction resulting from a thermal bath with the Gibbons-Hawking temperature, thus it clearly reveals the intrinsic thermal nature of de Sitter spacetime from a different physical context. For the static atom, there is a correction to the geometric phase coming from both the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the proper acceleration of the atom. Furthermore, in a gedanken experiment, we estimate the magnitude of the correction to the geometric phase as opposed to that in a flat spacetime. We find that the correction for the freely falling atom is too tiny to be measured, and that for the static atom achieves an observable magnitude only when the atom almost locates at the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. A 44 (1956) 247.

    MathSciNet  Google Scholar 

  2. M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (1987) 1593 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Samuel and R. Bhandari, General setting for Berrys phase, Phys. Rev. Lett. 60 (1988) 2339 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Sjöqvist et al., Geometric phases for mixed states in interferometry, Phys. Rev. Lett. 85 (2000) 2845 [quant-ph/0005072].

    Article  ADS  Google Scholar 

  6. J. Du, Observation of geometric phases for mixed states using NMR interferometry, Phys. Rev. Lett. 91 (2003) 100403 [quant-ph/0305054].

    Article  ADS  Google Scholar 

  7. K. Fujikawa and M. Hu, Geometric phase of a two-level system in a dissipative environment, Phys. Rev. A 79 (2009) 052107 [arXiv:0805.0645].

    Article  ADS  Google Scholar 

  8. J. Chen et al., Non-markovian effect on the geometric phase of a dissipative qubit, Phys. Rev. A 81 (2010) 022120.

    Article  ADS  Google Scholar 

  9. P.I. Villar and F.C. Lombardo, Geometric phases in the presence of a composite environment, Phys. Rev. A 83 (2011) 052121.

    Article  ADS  Google Scholar 

  10. X. Huang, and X. Yi, Non-Markovian effects on the geometric phase, Europhys. Lett. 82 (2008) 50001 [arXiv:0811.1071].

    Article  ADS  Google Scholar 

  11. Z. Chen, L. Guo and F. Luo, Markovian and non-Markovian effects on the geometric phase of a dissipative Josephson qubit, Europhys. Lett. 96 (2011) 40011.

    Article  ADS  Google Scholar 

  12. A.C. Günhan, S. Turgut and N.K. Pak, Environmental effects on the geometric phase, Eur. Phys. J. D 64 (2011) 155.

    ADS  Google Scholar 

  13. A. Uhlmann, Parallel transport andquantum holonomyalong density operators, Rep. Math. Phys. 24 (1986) 229.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Uhlmann, Gauge field governing parallel transport along mixed states, Lett. Math. Phys. 21 (1991) 229 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. Singh, D. Tong, K. Basu, J. Chen and J. Du, Geometric phases for nondegenerate and degenerate mixed states, Phys. Rev. A 67 (2003) 032106 [quant-ph/0304068].

    Article  ADS  Google Scholar 

  16. M. Ericsson et al., Generalization of the geometric phase to completely positive maps, Phys. Rev. A 67 (2003) 020101 [quant-ph/0205160].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.G. Peixoto de Faria, A.F.R. de Toledo Piza and M.C. Nemes, Phases of quantum states in completely positive non-unitary evolution, Europhys. Lett. 62 (2003) 782 [quant-ph/0205146].

    Article  ADS  Google Scholar 

  18. D.M. Tong, E. Sjöqvist, L.C. Kwek and C.H. Oh, Kinematic approach to the mixed state geometric phase in nonunitary evolution, Phys. Rev. Lett. 93 (2004) 080405 [quant-ph/0405092].

    Article  ADS  Google Scholar 

  19. J. Hu and H. Yu, Geometric phase for an accelerated two-level atom and the Unruh effect, Phys. Rev. A 85 (2012) 032105 [arXiv:1203.5869] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Hu and H. Yu, Geometric phase outside a Schwarzschild black hole and the Hawking effect, JHEP 09 (2012) 062 [arXiv:1209.2496] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Martin-Martinez, I. Fuentes and R.B. Mann, Using Berrys phase to detect the Unruh effect at lower accelerations, Phys. Rev. Lett. 107 (2011) 131301 [arXiv:1012.2208] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W. Zhou and H.W. Yu, Lamb shift in de Sitter spacetime, Phys. Rev. D 82 (2010) 124067 [arXiv:1012.4055] [INSPIRE].

    ADS  Google Scholar 

  23. W. Zhou and H.W. Yu, Lamb Shift for static atoms outside a Schwarzschild black hole, Phys. Rev. D 82 (2010) 104030 [arXiv:1011.1619] [INSPIRE].

    ADS  Google Scholar 

  24. Z. Zhu and H.W. Yu, Position dependent energy level shifts of an accelerated atom in the presence of a boundary, Phys. Rev. A 82 (2010) 042108 [arXiv:1009.1425] [INSPIRE].

    Article  ADS  Google Scholar 

  25. L. Rizzuto and S. Spagnolo, Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate, Phys. Rev. A 79 (2009) 062110.

    Article  ADS  Google Scholar 

  26. L. Rizzuto and S. Spagnolo, Energy-level shifts of a uniformly accelerated atom between two reflecting plates, Phys. Scr. T143 (2011) 014021.

    Article  ADS  Google Scholar 

  27. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Mottola, Particle creation in de Sitter space, Phys. Rev. D 31 (1985) 754 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. B. Allen and A. Folacci, The massless minimally coupled scalar field in de Sitter space, Phys. Rev. D 35 (1987) 3771 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. B. Allen, Vacuum states in de Sitter space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  Google Scholar 

  32. T. Bunch and P. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Mishima and A. Nakayama, Notes on the Hawking effect in de Sitter space, Phys. Rev. D 37 (1988) 348 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. D. Polarski, The scalar wave equation on static de Sitter and Anti-de Sitter spaces, Class. Quant. Grav. 6 (1989) 893 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D. Polarski, A minimally coupled scalar field on the static de Sitter space, Phys. Rev. D 41 (1990) 442 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. A. Nakayama, Notes on the Hawking effect in de Sitter space. II, Phys. Rev. D 37 (1988) 354.

    ADS  Google Scholar 

  37. D. Polarski, On the Hawking effect in de Sitter space, Class. Quant. Grav. 6 (1989) 717 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Galtsov, M.Y. Morozov and A. Tikhonenko, Massless fields in the static de Sitter space: exact solutions and choice of the vacuum states, Theor. Math. Phys. 77 (1988) 1137 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  39. Z.-y. Zhu and H.-w. Yu, Thermal nature of de Sitter spacetime and spontaneous excitation of atoms, JHEP 02 (2008) 033 [arXiv:0802.2018] [INSPIRE].

    Article  ADS  Google Scholar 

  40. F.M. Cucchietti et al., Geometric phase with nonunitary evolution in the presence of a quantum critical bath, Phys. Rev. Lett. 105 (2010) 240406 [arXiv:1006.1468].

    Article  ADS  Google Scholar 

  41. V. Gorini, A. Kossakowski and E. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17 (1976) 821 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. F. Benatti, R. Floreanini and M. Piani, Environment induced entanglement in Markovian dissipative dynamics, Phys. Rev. Lett. 91 (2003) 070402 [quant-ph/0307052].

    Article  ADS  Google Scholar 

  44. N.D. Birrell and P.C.W. Davies, Quantum field theory in curved space, Cambridge University Press, Cambridge U.K. (1982).

    Book  Google Scholar 

  45. J. Audretsch and R. Müller, Radiative energy shifts of an accelerated two-level system, Phys. Rev. A 52 (1995) 629.

    Article  ADS  Google Scholar 

  46. G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. S. Deser and O. Levin, Accelerated detectors and temperature in (Anti)-de Sitter spaces, Class. Quant. Grav. 14 (1997) L163 [gr-qc/9706018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Z., Jing, J. Geometric phase of two-level atoms and thermal nature of de Sitter spacetime. J. High Energ. Phys. 2013, 109 (2013). https://doi.org/10.1007/JHEP04(2013)109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)109

Keywords

Navigation